
Comment on “Quasi-One-Dimensional Metal-Insulator
Transitions in Compound Semiconductor Surfaces”

Based on density-functional theory (DFT) calculations
within the generalized gradient approximation (GGA),
Zhao et al. [1] claimed that one-atom-wide metallic
structures formed by selectively bonding of H or Li
atoms to GaNð101̄0Þ and ZnOð101̄0Þ undergo the Peierls-
type metal-insulator (MI) transitions, leading to a charge-
density-wave (CDW) formation with periodic lattice
distortion. However, we here demonstrate that such a
CDW phase in GaNð101̄0Þ-1H is due to the artifact of
the GGA, while the antiferromagnetic (AFM) ground state
is predicted by the hybrid DFT calculation and the exact-
exchange plus correlation in the random-phase approxi-
mation (EXþ cRPA).
For the 1D metallic structure composed of the surface

metal atoms (Ga or Zn), Zhao et al. [1] found that the
semiconducting pð1 × 2Þ phase with alternately up-
and-down displacements is more stable than the metallic
pð1 × 1Þ phase, and the pð2 × 2Þ phase is further stabi-
lized. The relative total energies (ΔE) of these phases for
GaNð101̄0Þ-1H are listed in Table I.
For GaNð101̄0Þ-1H, Zhao et al. [1] showed that the

pð1 × 1Þ phase has a Fermi surface nesting that drives the
CDW with the up-down buckling distortion. The resulting
Peierls-type MI transition produced the pð1 × 2Þ phase
with ΔE ¼ −0.51 eV and Eg ¼ 0.74 eV (see Table I). The
further lattice relaxation of pð2 × 2Þ gives ΔE ¼ −0.57
and Eg ¼ 0.99 eV. Interestingly, a ferromagnetic (FM)
phase appears in metallic pð1 × 1Þ, but such spin ordering
disappears in semiconducting pð1 × 2Þ and pð2 × 2Þ [1].
This disappearance of magnetic order may be due to the
fact that the local density approximation or GGA tends to
stabilize artificially delocalized electronic states due to their
inherent self-interaction error (SIE) [2].
We optimize the structure of GaNð101̄0Þ-1H using the

all-electron Fritz-Haber-Institut ab initio molecular simu-
lations [3] code with the GGA functional of Perdew-Burke-
Ernzerhof (PBE) [4]. The present results of ΔE and Eg for
the nonmagnetic (NM) pð1 × 2Þ- and pð2 × 2Þ-CDW
phases agree well with those reported in the Letter (see
Table I). In order to correct the SIE, we use the Heyd-
Scuseria-Ernzerhof (HSE) hybrid functional [5] to calculate
ΔE and Eg of various phases including the AFM order.
Here, we employed a mixing factor of α ¼ 0.32 controlling
the amount of exact-exchange energy, which predicts
well the observed bulk band gap of 3.51 eV [6]. We find
that the HSE calculation stabilizes the magnetic phases
with ΔE ¼ −0.95, −1.10, and −1.11 eV for pð1 × 1Þ-FM,
pð1 × 2Þ-AFM, and pð2 × 2Þ-AFM, respectively (see
Table I). Meanwhile, ΔE of pð1 × 2Þ and pð2 × 2Þ CDW
are −0.98 and −1.04 eV, respectively. Thus, the HSE
calculation shows that the AFM phase is energetically
more stable than the CDW formation. This result is
confirmed by the EXþ cRPA calculation [7,8].

Our GGA and hybrid-DFT calculations showed the
different predictions for the ground state of GaNð101̄0Þ-
1H. Contrasting with PBE predicting the pð2 × 2Þ-CDW
phase, HSE predicted the pð2 × 2Þ-AFM phase. It is noted
that the metallic pð1 × 1Þ phase of GaNð101̄0Þ-1H has a
narrowbandwidth of 1.24 eVat the Fermi level,while that of
ZnOð101̄0Þ-1H has a wide band width of 4.08 eV [1]. Such
more localized dangling-bond electrons in GaNð101̄0Þ-1H
are likely to favor the AFM order over the CDW formation,
contrasting with the case of ZnOð101̄0Þ-1H. Future exper-
imental works are stimulated to confirm these theoretical
predictions.
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PBE (Ref. [1]) PBE HSE

ΔE Eg ΔE Eg ΔE Eg
pð1×2Þ-CDW −0.51 0.74 −0.51 0.71 −0.98 1.68
pð2×2Þ-CDW −0.57 0.99 −0.57 0.83 −1.04 1.82
pð1×1Þ-FM − Metal −0.12 Metal −0.95 1.04
pð1×2Þ-AFM −1.10 1.85
pð2×2Þ-AFM −1.11 1.98
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[8] For the EXþ cRPA calculation we used the periodic slab
geometry and the electronic states obtained using the PBE
functional. TheEXþcRPA total-energy differenceΔEEXþcRPA
between the CDWand AFM phases is 122 meV per 2 × 2 unit
cell, which is somewhat larger than the corresponding one
(68 meV) obtained using the HSE calculation with α ¼ 0.32.
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