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We find an exact analytical solution to the exchange-only time-dependent density-functional theory
(TDDFT) problem for a significant class of quasi-low-dimensional (QLD) materials: QLD electron gas
with only one band filled in the direction perpendicular to the layer or wire. The theory yields the TD
exchange potential as an explicit nonlocal operator of the TD spin density. The dressed interband (image
states) excitation spectra of quasi-two-dimensional electron gas are obtained, while the comparison with
the Kohn-Sham transitions provides insights into the qualitative and quantitative role of the many-body
interactions. Important cancellations between the Hartree fH and the exchange fx kernels of TDDFT are
found in the low-density regime, elucidating the interrelations between the Kohn-Sham and the many-body
dynamics in mesoscopic systems.
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Density-functional theory (DFT) [1] and its time-
dependent counterpart TDDFT [2] are presently, by far,
the most popular methods to conceive the ground-state and
excitation properties, respectively, of atomic,molecular, and
condensed matter systems. Substituting the quantummany-
body problem with the single-particle one, both DFT and
TDDFT require the knowledge of the exchange-correlation
(XC) potentials, vXCðrÞ and vXCðr; tÞ, respectively, which
are necessary to close the system of Kohn-Sham (KS)
equations [1], which (in the TD case) read

i
∂ϕiðr;tÞ

∂t ¼
h
−
1

2
Δþvextðr;tÞþvHðr;tÞþvXCðr;tÞ

i
ϕiðr;tÞ:

ð1Þ
Since the external potential vextðr; tÞ is set by the problem
and the Hartree potential vHðr; tÞ ¼

R
nðr0; tÞ=jr − r0jdr0 is

defined by the electron density nðr; tÞ, Eqs. (1) with
proper initial conditions can be solved, determining the
orbitals ϕiðr; tÞ, and from them constructing the density
nðr; tÞ ¼ P

ijϕiðr; tÞj2, the latter being the key quantity of
interest in (TD)DFT. Unfortunately, although the exact XC
potentials vXCðr; tÞ exist in principle, they are never known
for nontrivial systems, making us resort to approximations.
The XC potentials now overwhelmingly used in appli-

cations are local functions of the electron density or also of
its spatial derivatives, the local-density approximation
(LDA) [1] and the generalized-gradient approximation
(GGA) [3], respectively. While simple and efficient in
implementations, these approximations suffer from the
well-known drawbacks. The one of our specific concern
here will be the inherent dimensionality dependence
of both LDA and GGA, i.e., their having distinct 3D,
2D, and 1D versions, which makes them poorly substan-
tiated and unreliable in the case of systems of intermediate

dimensionality, such as quasi-low-dimensional materials.
A truly first-principles XC functional, being one and the
same for all systems, must work equally well for different
dimensionalities, including the intermediate ones. The
exact exchange (EXX) [or optimized-effective potential
[4,5] stands out in DFT as a first-principles potential not, in
particular, bound to any specific dimensionality. This
potential obeys a number of important requirements of
the exact theory, such as the correct asymptotic behavior
−e2=r for finite systems, the support of image states at
surfaces and in low dimensions [6–8], it produces [9,10] the
derivative discontinuity in the energy dependence on the
fractional electrons number [11], and it is free from self-
interaction. The time-dependent version of the EXX theory
has been developed [12,13] and found to support the
excitonic effect in semiconductors [14]. For all the advan-
tages, an unfortunate drawback of the EXX theory is the
extreme complexity of its implementation: It is the orbital-
dependent formalism which involves the solution of the
notoriously tedious optimized-effective potential integral
equation [4,5]. This has prevented EXX from becoming
widely used in applications, and even qualitative insights
are often obscured by heavy numerical complications.
It, therefore, came recently as a surprise that, for the quasi-

low-dimensional electron gas (QLDEG) with only one band
populated in the transverse direction, the ground-state EXX
problem has a simple explicit solution in terms of the spin
density [8]. A natural question arises whether the same route
canbe taken tobuild the analyticalEXX theoryofmany-body
excitations inQLDEG. In this Letter,wegive to this a positive
answer by finding an explicit solution to the TD exchange
potential in terms of theTDspin density forQLDEGwith one
bandpopulated. For the solution to be expressible through the
density, the applied perturbation must not change the
symmetry of the QLDEG, as is discussed below.
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We start from the ground state of a Q2DEG (for 1D case,
see below), uniform in the xy plane and confined in the
z direction by a potential vextðzÞ. The in-plane and the
perpendicular variables separate in this case. We further
assume that only the states μ↑0 ðzÞ and μ↓0 ðzÞ, one for each
spin orientation, are occupied in the z direction [8], leading
to the orbitals of the form

ψσ
k∥
ðrÞ ¼ 1ffiffiffiffi

Ω
p eik∥·r∥μσ0ðzÞ; ð2Þ

where Ω is the normalization area. To this system we
apply a TD potential, which is assumed to depend on the
z coordinate only (as schematized in Fig. 1) and, by this, it
preserves the system’s lateral uniformity during the time
evolution. We will see that a wealth of many-body
phenomena are preserved within these constraints, while
the gain is the system admitting an analytical solution.
The main result of this Letter is that, with the above

setup, the TDEXX potential is

vσxðz; tÞ ¼ −
1

nσ2D

Z
F2ðkσFjz − z0jÞ

jz − z0j nσðz0; tÞdz0; ð3Þ

where nσðz; tÞ is the spin density,

F2ðuÞ ¼ 1þ L1ð2uÞ − I1ð2uÞ
u

;

L1 and I1 are the first-order modified Struve and Bessel
functions [15,16], respectively, nσ2D ¼ R∞

−∞ nσðz; tÞdz is the
2D spin density, which does not change during the time
evolution, and kσF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4πnσ2D
p

is the corresponding 2D
Fermi radius. We derive Eq. (3) in Sec. I of the
Supplemental Material [17], with the use of the adiabatic
connection perturbation method [13,18]. In the linear-
response regime, Eq. (3) gives immediately for the
exchange kernel

fσσ
0

x ðz;z0;ωÞ¼ δvσxðz;ωÞ
δnσ

0 ðz0;ωÞ¼−
1

nσ2D

F2ðkσFjz−z0jÞ
jz−z0j δσσ0 : ð4Þ

Notably, fx of Eq. (4) is frequency-independent. Our point,
however, is that Eqs. (3) and (4) are by no means an
adiabatic approximation: A detailed derivation ([17], Sec. I)
shows that they hold exactly within the fully dynamic
TDEXX for QLDEGwith one band filled, provided that the
exciting field is applied perpendicularly to the layer.
We use the kernel of Eq. (4) with the basic linear-

response TDDFT equality [19,20]

ðχ−1Þσσ0 ðz; z0;ωÞ ¼ ðχ−1s Þσσ0 ðz; z0;ωÞ − fHðz; z0Þ
− fσσ

0
x ðz; z0;ωÞ; ð5Þ

where χ and χs are the interacting-electrons and KS spin-
density-response functions, respectively, the latter given in
our case by

χσσ
0

s ðz; z0;ωÞ ¼ nσ2Dμ
σ
0ðzÞμσ0ðz0Þ

X∞
n¼1

�
1

ωþ λσ0 − λσnþ i0þ

−
1

ω− λσ0 þ λσnþ i0þ

�
μσnðzÞμσnðz0Þδσσ0 ; ð6Þ

where λσn and μσnðzÞ are the eigenenergies and the eigen-
functions of the perpendicular motion, respectively, and the
summation over the states includes the integration over the
continuous spectrum. A remarkable property of the KS
response function of this system is that it is immediately
invertible to ([17], Sec. II)

ðχ−1s Þσσ0 ðz; z0;ωÞ

¼ δσσ0

2nσ2Dμ
σ
0ðzÞμσ0ðz0Þ

½ω2Xσ
1ðz; z0Þ − Xσ

2ðz; z0Þ�; ð7Þ

with

Xσ
1ðz; z0Þ ¼

X∞
n¼1

μσnðzÞμσnðz0Þ
λσn − λσ0

¼ ðĥσs − λσ0Þ−1½δðz − z0Þ − μσ0ðzÞμσ0ðz0Þ�; ð8Þ

Xσ
2ðz; z0Þ ¼

X∞
n¼1

ðλσn − λσ0ÞμσnðzÞμσnðz0Þ

¼ ðĥσs − λσ0Þδðz − z0Þ; ð9Þ

where ĥσs is the static KS Hamiltonian [21]. The Hartree
part of the kernel is

fσσ
0

H ðz; z0Þ ¼ −2πjz − z0j: ð10Þ
The many-body excitation energies ω are found from the
equation

X
σ0

Z
ðχ−1Þσσ0 ðz; z0;ωÞδnσ0 ðz0;ωÞdz0 ¼ 0; ð11Þ

where δnσðz;ωÞ is the self-oscillation of the spin density.

FIG. 1. Schematics of the quasi-two-dimensional electron gas
(Q2DEG) under the action of a time-dependent external potential.
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With the use of Eqs. (5) and (7)–(9), Eq. (11) can be
rewritten as the following eigenvalue problem ([17],
Sec. II)

ðĥσs − λσ0Þ
�
ðĥσs − λσ0ÞyσðzÞ þ 2nσ2D

×
Z

μσ0ðzÞ
X
σ0
fσσ

0
H ðz; z0Þμσ00 ðz0Þyσ

0 ðz0Þdz0 þ 2nσ2D

×
Z

μσ0ðzÞfσσx ðz; z0Þμσ0ðz0Þyσðz0Þdz0
�
¼ ω2yσðzÞ; ð12Þ

where yσðzÞ ¼ δnσðzÞ=μσ0ðzÞ.
We have obtained the eigenvalues and eigenfunctions of

Eq. (12) numerically on a z-axis grid for a number of the
EG densities. The confining potential vextðzÞ was chosen to
be that of the 2D positive charge background. The static KS
problem was solved self-consistently with the use of the
EXX potential, which is that of Eq. (3) with the ground-
state density in lieu of the TD one [8]. Results for the
eigenenergies of the excited states are presented in Figs. 2
and 3, for spin-neutral and fully spin-polarized Q2DEG,
respectively, where TDEXX is compared to the random-
phase approximation (RPA) [setting fx ¼ 0 in Eq. (12)]
and with the KS transitions [setting fx ¼ fH ¼ 0 in
Eq. (12)]. Obviously, the first excited state is affected
strongly by the many-body interactions, resulting in the
both TDEXX and RPA being very different from the
single-particle KS transition. This effect, however, weakens
for higher excited states. Second, the difference between
the TDEXX and RPA increases with the growth of rs
(decrease of the density), the former moving closer to the
KS values, which is more pronounced for the spin-
polarized than for the spin-neutral EG. This has an elegant
explanation: Expanding Eq. (4) in powers of kσF, we can
write at small kσF

fσσ
0

x ðz; z0;ωÞ ≈
�
−

32

3kσF
þ 2πjz − z0j

�
δσσ0 : ð13Þ

Noting that the first term in Eq. (13) is a constant and,
consequently, it does not play a role in fx, and comparing
with Eq. (10), we conclude that, for a dilute EG, the
exchange part of the kernel by a half and completely
cancels the Hartree part, for the spin-neutral and fully spin-
polarized EG, respectively. In the fully spin-polarized case,
at low densities, this brings the many-body excitation
energies back to the KS values, as can be observed in
Fig. 3, right lower panel.
We note that the energies of the vertical interband

excitations, i.e., those without the transfer of the in-plane
wave vector, which we obtain, are purely real, which means
that, within the present setup, the finite lifetime of the
image states would require the inclusion of the correlations.
In contrast to the KS transitions, TDEXX and RPA
excitation energies split into the even and odd series, the
values changing smoothly within each, while jumping
across the series. In Figs. 2 and 3, the points within each
series are connected with dashed lines serving as guides for
the eye. In Fig. 4, we plot the self-oscillations δnðz;ωÞ
themselves.
The quasi-1D electron gas admits the same treatment as

the Q2DEG above, leading to the following results (cf. the
static case [8]): The TD exchange potential is given by

vσxðζ; tÞ ¼ −
1

nσ1D

Z
F1ðkσFjζ − ζ0jÞ

jζ − ζ0j nσðζ0; tÞdζ0; ð14Þ

and the corresponding exchange kernel is

fσσ
0

x ðζ; ζ0;ωÞ ¼ −
1

nσ1D

F1ðkσFjζ − ζ0jÞ
jζ − ζ0j δσσ0 ; ð15Þ

where ζ ¼ ðx; yÞ, the wire is stretched along the z axis,

F1ðuÞ ¼
1

2π
G2;2

2;4

"
u2
�����
1
2
; 1

1
2
; 1
2
;− 1

2
; 0

#
;

FIG. 2. Excitation energies of a spin-neutral Q2DEG with one
transverse band filled. Circles, squares, and triangles are TDEXX,
RPA, and KS excitation energies, respectively. Plus and minus
signs mark even and odd excitations, respectively. Dashed lines
connect eigenvalues of the even and odd self-oscillations,
separately.

FIG. 3. The same as Fig. 2, but for the fully spin-polarized
Q2DEG.
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and Gm;n
p;q

h
u
��� a1; …; ap
b1; …; bq

i
is the Meijer G function

[15,16]. The Hartree kernel in the Q1D case is

fσσ
0

H ðζ; ζ0Þ ¼ −2 log ðkσFjζ − ζ0jÞ: ð16Þ
As shown earlier [8], the assumption of the QLDEG

having one spin-state occupied in the transverse direction is
not very restrictive: This is a regime actually realizing at
rs > 1.46 and rs > 0.72, for the Q2D and Q1D cases,
respectively, provided the confining potential is that of the
positive 2D (1D) uniform background. The second feature
of our setup, that of the perturbation field being applied
perpendicularly to the system’s extent, is important: By this
we do not study the excitation spectra of the 2D (1D) EG
proper, which problem has been extensively addressed in
the literature before ([20,22], and references therein) but we
are concerned with the interband excitations, which are the
excitations to the image states of QLDEG. The latter
excitations we handle as properly dressed, i.e., accounting
for the many-body dynamic interactions, doing this at the
level of TDEXX. With the understanding of the above, our
theory is exact.
The localized Hartree-Fock potential (LHF) [23] has

recently attracted new attention as a single-particle poten-
tial providing the best possible fulfillment of the many-
body TD Schrödinger equation by a Slater determinant
wave function [24,25] and, in the spirit of the “direct-
energy” potentials [26], yielding the total energy as a sum
of KS eigenvalues. It has been recently shown [8] that for
QLDEG with one populated band in its ground state, LHF
potential coincides, up to a constant, with the EXX one. In
Sec. III of the Supplemental Material [17], we prove that
the same coincidence, up to a TD constant, holds between
TDEXX and TDLHF potentials.
Technically trivial but conceptually instructive, the

Q0D case can be treated similarly. The only systems with
one, at most, filled orbital per each spin direction are then
the singlet of two electrons and one-electron systems, for

spin-neutral and spin-polarized cases, respectively. In both
cases the TD exchange potential is well known to be minus
half of and minus Hartree potential, respectively. We recall
that in the Q2D and Q1D cases the latter property holds in
the low-density limit only, while for two and one electron
systems it just holds, the latter limit having, obviously, no
meaning. Accordingly, the exchange kernels in these cases
are minus half of and minus Hartree kernel, respectively.
In conclusion, we have identified the quasi-low-

dimensional electron gas with one populated band as a
unique system admitting an analytical solution of the many-
body excitation problem by means of the time-dependent
density-functional theory at the level of the exact exchange.
The scent and feel of TDDFT was achieved by the
straightforward analytical construction of the key quantities
of the theory. We have applied our method to obtain the
interband excitation spectra (excitations to image states) of
Q2DEG. The low-lying excited states are shown to be
strongly affected by the many-body interactions for the EG
of higher densities. In the low-density regime, we have
shown that the exchange kernel cancels the Hartree one by
a half and entirely, in the case of the spin-neutral and fully
spin-polarized EG, respectively. This demonstrates how
qualitatively wrong and inconsistent the often used ran-
dom-phase approximation (i.e., keeping the Hartree part of
the kernel only) may be. For the dilute fully spin-polarized
QLDEG this leads to the fundamental conclusion that the
Kohn-Sham transitions can be, at the same time, the true
excitation energies of a many-body system.
We, finally, argue that the concept of the quasi-low-

dimensional electron gas with one populated band has the
potential to continue to bring valuable results in meso-
scopic physics on the one hand, and to enrich our under-
standing of DFT and TDDFT themselves, on the other.
Among the applications envisaged, to name only the two,
are the nonlinear dynamics with the use of Eq. (3),
including pumping with laser fields, and the construction
of advanced approximate XC functionals, such as, e.g.,
meta-GGA ones [27], which require tuning against exact
solutions. Inclusion of electron correlations in the formal-
ism is the next natural step. Preliminary analysis shows that
this is feasible by means of the adiabatic connection
perturbation theory to the second order in interaction.
This work is under way.
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