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Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to
interchange instability and transport. Scaling relations for the propagation velocity of density perturbations
relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including
damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by
nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically
confined electron-positron plasma experiments. The model is generalized to other matter-antimatter
plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven
local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.
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Antimatter, predicted by Dirac less than a century ago
[1], has so far made its earthly appearance through cosmic
and laboratory high-energy events only in exiguous quan-
tities [2] or rather brief periods [3] before annihilating
again. Macroscopic amounts of mixed matter-antimatter in
the form of relativistic electron-positron pair plasmas are
presumed to exist at the highest energy density astrophysi-
cal objects, such as active galactic nuclei, pulsars, and black
holes [4]. The extended confinement of larger numbers than
a few antimatter particles in the laboratory is impeded by
instant annihilation at contact with materials. Ion and atom
traps have been used to confine clouds of positrons or
antihydrogen [5,6]. The investigation of many-body anti-
matter physics on long time scales and low densities should
be feasible in magnetically confined quasineutral systems
of charged particles [7–9]. For short times, high-density
matter-antimatter plasmas could be achieved by laser-target
interaction [3].
The most basic matter-antimatter system conceivable in

the laboratory is a classical plasma with equal amounts of
electrons and positrons. An electron-positron (e-p) pair
plasma is a unique many-body system and distinct from a
classical electron-ion (e-i) plasma in its intrinsic mass
symmetry. Many fundamental instabilities that are abun-
dant in mass-asymmetric e-i plasmas are absent in e-p
systems [7]. Microinstabilities like drift waves in magnet-
ized e-i plasmas generically result in turbulent transport
losses across the confining magnetic field [10]. The
absence or weakness of instabilities and turbulence is
consequently crucial for the quality of planned magneti-
cally confined e-p plasma experiments [8]. Classical
resistive drift wave instabilities, which rely on asymmetry
in the motion of electrons and ions parallel to the magnetic
field B with mass ratio me=mi ≪ 1, are nonexistent in e-p
plasmas. Magnetic curvature-induced drift-interchange
modes driven by a temperature gradient have been shown
to be suppressed for low e-p plasma densities by an

effective screening of electric potential fluctuations on
scales smaller than the Debye length [8,11,12].
Cross-field pressure-driven interchange motion and insta-

bility of plasma perturbations is achievable not only in the
presence of temperature gradients, but also for isothermal
plasmas in the presence of a density gradient. Local field-
aligned (flutelike) density perturbations with a positive
amplitude, sometimes termed “blobs,” can be pushed across
the magnetic field (down the field gradient) by their own
intrinsic density inhomogeneity [13,14]. This instability
mechanism is similar (and in reduced models isomorphic)
to the buoyancy-driven convection of fluids with a pressure
gradient [15]: While the familiar Rayleigh-Bénard convec-
tive motion feeds on the gravitational potential energy, the
magnetized plasma interchange instability is driven by the
energy stored in the inhomogeneity of the confining mag-
netic equilibrium field, which acts like an effective gravity.
Bothmechanisms generate vorticity that leads to propagating
plume structures. In magnetized plasmas, the fluidlike
motion perpendicular to the magnetic field is governed by
drifts, which describe the mean motion on top of the fast
gyration of the charged particles. In the case at hand,
curvature and magnetic gradient drifts at pressure gradients
perpendicular to the equilibrium profiles and magnetic field
are responsible for the separation of differently charged
species, and for polarization drifts, which respond to main-
tain quasineutrality. A dipolar electric potential is formed
which transports the perturbation down the magnetic field
gradient by E ×B drift convection [15].
Here we show that density blobs in an inhomogeneously

magnetized e-p plasma are interchange unstable for a range
of accessible parameters and can lead to crucial transport
losses. We further consider more general matter-antimatter
plasmas consisting of initially equal electron, proton, posi-
tron, and antiproton densities (which could in some future
experiment be feasible but is cosmologically probably
irrelevant) and show that the interchange instability leads
not only to transport but also to matter-antimatter separation.
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First, we analyze magnetized e-p plasmas by means of a
full-F gyrofluid model [16], which is derived from a
gyrokinetic model that evolves the full distribution function
Fðx; v; tÞ. In the isothermal 2D limit [17,18] the model
consists of continuity equations for the gyrocenter densities
ns for electron and positron species s ∈ ðe; pÞ:

∂tns ¼ ½ns;ψ s� þ nsκ̂ðψ sÞ þ τsκ̂ðnsÞ; ð1Þ
coupled to the electric potential ϕ in Poisson’s equation:

X

s

ZsNs þ ε∇2⊥ϕ ¼ 0: ð2Þ

Exact local quasineutrality is thus violated for ε ≠ 0.
The particle densities Ns with charge states Ze ¼ −1
and Zp ¼ þ1 are linked to the gyrocenter densities ns via

Ns ¼ Γ1sns þ ∇ · ðnsμsZ−1
s ∇⊥ϕÞ: ð3Þ

The divergence term inEq. (3) implicitly covers the effects of
polarization drifts (which explicitly appear in fluid but not
gyrofluid models). In contrast to quasineutral e-i systems as
in Ref. [16], we retain the Debye parameter ε ¼ ðλ=ρÞ2,
which represents the effects of finite Debye length λ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0Te=ðe2Ne0Þ

p
in relation to the Larmor radius

ρ ¼ ffiffiffiffiffiffiffiffiffiffiffi
Teme

p
=ðeBÞ. Here Te andme are the electron temper-

ature and mass, respectively. The temperature ratio is
τs ¼ Ts=ðZsTeÞ, so that τe ¼ −1 and τp ≥ 0. The e-p
mass ratios μs ¼ ms=mp ¼ 1 are both unity, so that
μ≡P

sμs ¼ 2. Annihilation between positrons and
electrons is here neglected for the time scales of radial
transport [19].
Finite Larmor radius (FLR) and ponderomotive effects

enter via ψ s ¼ Γ1sϕ − ð1=2Þðμs=ZsÞð∇⊥ϕÞ2 for constantB.
The gyroaveraging operator is given by Γ1s ¼ ½1þ
ð1=2Þbs�−1 with bs ¼ −ðμsτs=ZsÞ∇2⊥. The gyrocenter den-
sities are normalized to a reference densityn0, the potential to
Te=e, length scales to ρ, and time to cs=ρ with sound speed
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
. The 2D advection terms are expressed

through Poisson brackets ½f;g� ¼ ð∂xfÞð∂ygÞ− ð∂yfÞð∂xgÞ
for local coordinates x and y perpendicular to B. Normal
magnetic curvature κ ¼ ∂x lnB≡ 2ρ=R enters into κ̂ ¼ κ∂y.
For toroidal confinement ρ ≪ R, the torus radius, so
that κ ≪ 1.
We analyze the dependence of the interchange growth rate

on the Debye screening parameter ε by linearizing Eqs. (1)
and (2) on top of a background density n0ðxÞ for small
perturbation amplitudes ~ne; ~np; ~ϕ ∼ exp ð−iωtþ ik · xÞ.
Neglecting FLR effects (bs ≡ 0), we get

−ω ~ns ¼ ðωc − ω�Þ ~ϕþ τsωc ~ns; ð4Þ
ðμþ εÞk2⊥ ~ϕ ¼ ~np − ~ne: ð5Þ

Here ωc ¼ κky and ω� ¼ −gky, with g ¼ ∂x ln n ¼ g0 þ g1
composed of a background density gradient g0 and a

contribution g1 by the intrinsic perturbation front. For
ω ¼ ωr þ iγ, we obtain a growth rate γ with

γ2 ¼ 1þ τ

μþ ϵ

�
ωc

k2⊥
ðω� − ωcÞ −

1

4
ðμþ ϵÞð1þ τÞω2

c

�
: ð6Þ

The model is unstable for γ2 > 0. For e-p plasmas μ ¼ 2
(with τ≡ τp and τe ¼ −1), whereas for quasineutral e-i
plasmas we would have μ ¼ 1 and ϵ ¼ 0.
We apply the blob correspondence principle [13] by

assuming that the mode most relevant for instability of the
blob front is of the blob scale σ. This situation is illustrated
on the left in Fig. 1: Initially circular perturbations with a
density maximum in the center have an intrinsic pressure
gradient pointing from all sides to the maximum. Instability
is [for k2⊥ ≪ 1 in Eq. (6)] achieved when ωc < ω� and thus
κ < −g ¼ −∂x ln ~n. This can be fulfilled only on the right
half circle of the perturbation (shaded area), and the growth
is maximum at the strongest gradient (orange area), which
is shifted to the right in the shape of a propagating plume.
For Gaussian blobs with width σ, this relates to ky ¼

kx ≈ 1=σ and k2⊥ ≈ 2=σ2. Relating the growth rate to blob
convection, the propagation velocity is approximated as
vx ¼ σγ. We here neglect a background gradient, so that
g ¼ g1 ≈ ð1=n0Þ∂xn is evaluated for an initial blob density
nðxÞ ¼ n0 þ A expð−x2=σ2Þ at x ¼ σ=

ffiffiffi
2

p
to be g1 ¼

−a=σ with a ≈ 0.86A. We obtain

vx ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðε=2Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
aκσ − κ2σ2

�
1

2
þ 1þ ðε=2Þ

σ2

�s

: ð7Þ

For κσ ≪ 1 the second term is negligible (except for
ε ≫ 1 or a ≪ 1), so that vx0ðεÞ ≈ v0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðε=2Þp

with
v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.43Aκσ

p
. We verify the (range of) validity of these

relations for vxðεÞ and vx0ðεÞ by a numerical simulation of
blob propagation for various parameters in the full-F
nonlinear model Eqs. (1) and (2) using the codes TOEFL

[18,20] and FELTOR [17,21]. During its propagation down
the magnetic field gradient, the unstable blob develops
from initially circular to a mushroom cap shape, with
subsequent vortex roll-up and final turbulent breakup.
Typical density structures of the rightward-propagating
blob at three times (t ¼ 0, 25 000, and 50 000) for
ε ¼ 0 (top) and ε ¼ 50 (bottom) are shown in Fig. 1 for
amplitude A ¼ 0.5, width σ ¼ 10 in units of ρ, and
curvature κ ¼ 10−4. The computational domain is
ð128ρÞ2 with a grid resolution of 5122. The simulation
illustrates that blob transport is strongly inhibited by Debye
screening.
We compare vx with the maximum center-of-mass

velocity vsim ≡maxðvcomÞ in the simulations, where vcom≡∂tf
R
dxdy½neðx; yÞ − n0�xg=f

R
dxdy½neðx; yÞ − n0�g for

e-p plasmas. The maximum velocity is usually obtained
in the “D-shaped” phase.
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In Fig. 2, vsimðεÞ from the simulation (symbols) and the
corresponding analytical estimates vxðεÞ (continuous
curves) are shown for κ ¼ 10−4 and various parameters
A and σ. In all cases, the scaling vx0ðεÞ ¼ v0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðε=2Þp

is reproduced over several orders of magnitude. The four
cases shown here are A ¼ 0.5 and σ ¼ 10 [black (circles)];
A ¼ 0.1 and σ ¼ 100 [blue (stars)]; A ¼ 0.05 and σ ¼ 40
[green (diamonds)]; and A ¼ 0.05 and σ ¼ 10 [red
(squares)]. Domain sizes are adapted to ensure
Ly > 10σ. Quantitative agreement between the scaling
law (curves) and simulations is best achieved for large
amplitudes and/or small widths (i.e., the red and black
cases). The largest differences appear for cases with small A
and large σ (shown in blue and green), which is also found
in e-i scaling laws based on energetic principles [22]. The
propagation velocities drop by more than an order of
magnitude for ε > 200.
On scales much larger than the Debye length λ, a plasma

is quasineutral, and electric fields are weak. For waves or
instabilities with mode numbers k ∼ ρ−1 ≪ λ−1, the space
charge term (∼ε) in the Poisson equation (2) is negligible,
as then the time for charges to adjust to quasineutrality is

much shorter than the mode evolution. For λ ≥ ρ, the space
charge effect in the Poisson equation is comparable to the
polarization densities, which can be seen in Eq. (5): The
inertial effects of polarization (given by the mass ratio term
μ) and of space charging (given by ε) add up, and both
reduce amplitudes for modes with large k⊥. For drift scales
smaller than λ, the local gradient lengths of the electric field
can be of the same order as the gyration scale, and the e-p
plasma oscillations (ωep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nee2=ϵ0me

p
) can occur on

the same or slower time scales as the gyration time
(ωc ¼ cs=ρ). Both have the damping effect, that energy
from coherently propagating or growing drift modes can be
transferred out of the present system and into local fields
and e-p plasma oscillations.
In e-p plasmas, the interchange-driven density transport

is consequently reduced if large values of ε can be
achieved. For the projected A Positron Electron
Experiment (APEX) e-p stellarator experiment [9], the
major torus radius is R ¼ 15 cm, and planned plasma
temperatures are on the order of 0.2–2 eV at B ¼ 2 T.
This results in e-p gyro radii of ρ ∼ 10−3 cm. Foreseen
particle densities are around 1013 m−3, which results in
Debye lengths λ ∼ 0.1–0.3 cm [9]. The curvature parameter
is on the order of κ ∼ 10−4 and ε ∼ 50–300. An unknown
quantity is the size and amplitude of emerging perturba-
tions. For e-p plasmas, we cannot assume the same
parameters for seed perturbations as in e-i plasmas, as
driving drift wave vortices are absent. But as the e-p
plasma is not exactly quasineutral, small local fluctuations
in ϕ or N could appear spontaneously with perpendicular
scales up to λ, which would correspond to σ ∼ 1–200. In the
Columbia Non-neutral Torus (CNT) experiment (with a
field structure similar to APEX), a dominant interchange
perturbation with global (m ¼ 1, n ¼ 0) flute mode struc-
ture was observed [23], which would correspond to
σ ∼ 1000. Such large perturbations could also arise in
e-p plasmas, e.g., when drift waves were excited by some
small fraction of ion “impurities” [24].
A complete stabilization is from Eqs. (6) and (7)

obtained only for very large ε≥ ðσa=κÞ−σ2. An ε ≈ 300,
as expected in the APEX experiment [9], would not
fully stabilize interchange blobs in a wide range of relevant
parameters by Debye screening, but particle transport
Γ ∼ Avx ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðε=2Þp

would still be reduced by
around an order of magnitude. To maintain large
ε ¼ ðλ=ρÞ ¼ ð2NB=Ne0Þ, the e-p particle densities have
to be kept at Ne0 ≪ NB ≡ ϵ0B2=ð2meÞ much smaller than
the Brillouin density NB [8].
An additional background density gradient will add to the

interchange driving and transport. The prediction of the level
of convective transport in toroidally confined e-p plasmas has
large uncertainties. As an order of magnitude estimate for
APEX(N∼1013m−3),weget a radial density fluxΓ¼ðANÞ×
ðvxcsÞ≈ð0.01×1013m−3Þð0.01×105ms−1Þ≈1014m−2 s−1.

FIG. 1. Propagation of an interchange unstable electron-posi-
tron blob in quasineutral (ε ¼ 0) and Debye screened plasma
(ε ¼ 50), shown at three times. Color scale, density n=n0; contour
lines drawn at n=n0 ¼ ð1.1; 1.3Þ.
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FIG. 2. Comparison of simulated (symbols) and analytical
velocities (curves). Black (circles), A ¼ 0.5 and σ ¼ 10; blue
(stars), 0.1 and 100; green (diamonds), 0.05 and 40; red (squares),
0.05 and 10.
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For a plasma surface S ∼ 0.1 m2, this corresponds to a loss
rate of 1013–1014 s−1 and a confinement time of milliseconds
to seconds, depending on the appearing (thermal) fluctuation
levels. Our results on blob transport complement the dis-
cussion of temperature-gradient-driven instabilities in e-p
plasmas in Refs. [8,11,12] but put a large uncertainty on the
optimistic confinement expectations for APEX [9].
The prospect of creating macroscopic magnetically

confined e-p plasmas in the laboratory motivates us to
consider other possible many-body matter-antimatter sys-
tems. From symmetry principles, it appears attractive to
study a system of equal numbers of electrons (e), protons
(i), positrons (p), and antiprotons (a). It is unclear and,
regarding present standard models of baryogenesis and
magnetogenesis, highly unlikely whether such a magnet-
ized e-i-p-a “ambiplasma” (following terminology by
Alfvén) has actually ever existed in cosmic history, but
it might in principle be created in a laboratory when large
numbers of positrons and antiprotons could be supplied
continuously at one site.
We briefly complement the above discussion by

a simulation of density blobs in a quasineutral ambi-
plasma. The model is again given by Eqs. (1)–(3) with
s ∈ ðe; i; p; aÞ. Scales are now normalized to the proton
drift scale ρ ¼ ffiffiffiffiffiffiffiffiffiffi

Temi
p

=ðeBÞ. We initialize with a matter-
antimatter symmetric density perturbation nsðxÞ ¼ n0 þ
A expð−x2=σ2Þ for all species. FLR effects are maintained
for the baryons (i and a), with τi ¼ 1 and τa ¼ −1. The
evolution of the ambiplasma blob by interchange driving is
initially similar to e-i or e-p blobs. Remarkably, the
detailed spatial matter-antimatter symmetry is twofold
broken during the blob development: Fig. 3(a) shows that
particle densities NsðxÞ deviate between species. NeðxÞ and
NpðxÞ remain closely aligned and so, respectively, doNiðxÞ
and NaðxÞ; but leptonic and baryonic densities locally
separate.
Figure 3(b) reveals that also the particle-antiparticle

symmetry is locally broken, where both ðNe − NpÞ and
ðNi − NaÞ differences grow with time. The curves for the
e-p density difference (dashed blue curve) agree with the

i-a difference (bold orange curve) through quasineutrality
(
P

sZsNs ¼ 0). Both are correlated with vorticity Ω.
The local baryon-lepton asymmetry is caused by FLR

effects, which mainly enter via Ns ∼ Γ1sns ¼ ns=ð1þ
bs=2Þ and reduce the densities of the massive species
(baryons) in regions of steep gradients. This asymmetry
disappears when FLR effects are switched off.
The breaking of the local particle-antiparticle symmetry is,

in contrast, a result of interchange-driven alignment with
vorticity [25] and increases with time, most pronounced at
steepening blob edges. It persists when τi ¼ τa ¼ 0 and is
thus not a FLR effect. Taking the total time derivative
of the polarization equation (linearized, without FLR
terms), we see thatDtðNp−NeÞ¼DtðNi−NaÞ∼κ̂ðNeþNpÞ∼
ðμiþμaÞDtΩ. The buildup and time scale of particle-anti-
particle density separation is here a consequence of vorticity
generation by the interchange instability and, thus, a result of
the both charge- and mass-dependent curvature or grad-B
drifts and polarization under quasineutrality: The inertial
baryon species drift by polarization into different regions of
the (time-varying) electric field formed by the curvature
drifts.
A consequence of the particle-antiparticle asymmetry

appears particularly in the presence of annihilation, which
is more relevant on ion drift times (compared to e-p times),
and can fortify the relative particle-antiparticle density
difference. A magnetized ambiplasma will lose its sym-
metry on combined interchange, diffusion, and annihilation
time scales and in the worst case can result in patches of e-i
locally separated from p-a plasma. This reduces the
prospect of achieving laboratory confinement.
In summary, we have shown that the transport of plasma

density by interchange driving appears for a large range of
parameters in e-p plasmas. Transport is (similarly to
previously discussed temperature-gradient-driven modes)
significantly reduced via Debye screening for low enough
densities, but derived confinement time scales bear large
uncertainties. In contrast, we have further argued that
sustained confinement of matter-antimatter plasmas of
globally equal electron, proton, positron, and antiproton
numbers is likely inhibited by local matter-antimatter
separation in the presence of annihilation.

This work was supported by the Austrian Science
Fund (FWF) Project No. Y398. The computational results
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