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We present quantum Monte Carlo calculations of few-neutron systems confined in external potentials
based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy
and radial densities for these systems are calculated in different external Woods-Saxon potentials. We
assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three-
and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an
exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as
the energy for shallow well depths, is lower than the tetraneutron resonance energy. This suggests that a
three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable.
To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external
confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this
approach. Finally, we discuss similarities between our results and ultracold Fermi gases.
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In recent years, there have been impressive theoretical
and experimental investigations to determine the properties
of neutron-rich nuclei, including isotopic chains of oxygen,
calcium, and others [1,2]. However, understanding the
properties of nuclei beyond the dripline is very challenging
and intriguing. Pure neutron matter has also received
much attention, as it provides a bridge between neutron-
rich nuclei, through the symmetry energy, and neutron stars
[3–6]. Therefore, understanding the interactions between
neutrons is an important task.
This question hasmotivated experimental investigations of

few-neutron systems. In 2002, an experimental claim for a
bound tetraneutron emerged from the detection of neutron
clusters from 14Be fragmentation [7]. However, this claim has
not since been reproduced, and it seems clear from several
increasingly sophisticated studies [8–10] that a tetraneutron
systemmust be unbound. The possibility of the existence of a
tetraneutron resonance is still an open question. Recently, a
candidate four-neutron resonance has been observed in the
double-charge-exchange reaction 4Heð8He;8BeÞ at an energy
of ð0.83� 0.65� 1.25Þ MeV, where the first error is stat-
istical and the second error is systematic [11]. Several other
experiments are approved to search for the tetraneutron
resonance [12,13], including a higher statistics run of the
double-charge-exchange reaction [14].
On the theoretical side, regarding calculations of a

possible tetraneutron resonance and their sensitivity to
nuclear forces, the situation is inconclusive. Green’s function
Monte Carlo calculations [10] and no-core-shell-model
calculations [15] suggest that there might be a tetraneutron
resonance with an energy lower than about 2 MeV. Other

calculations, however, suggest that, in order to have a
four-neutron resonance compatible with the experimental
measurements above, the three-neutron interaction must be
strongly modified [16], or even a four-neutron force needs to
be invoked [17]. However, what still remains missing is an
ab initio investigation based on two- and three-neutron
interactions derived from chiral effective field theory
(EFT). This Letter presents first results in this direction.
We investigate the properties of two, three, and four

neutrons confined in an external potential. Our calculations
provide evidence that (i) nuclear Hamiltonians constructed
within chiral EFT support a tetraneutron resonance at an
energy of 2.1(2) MeV compatible with recent experiments,
(ii) because of the extreme diluteness of the system, the role
of three-body (and higher-body) interactions as well as the
effects of details of the regulators in the two-body systems
are very small, (iii) the energy of a three-neutron resonance
at 1.1(2) MeV is lower than that of four neutrons, and
(iv) there are interesting analogies with systems made of
ultracold fermions. These conclusions open the possibility
for new experimental searches of a trineutron resonance
and that similar systems might be simulated by using
ultracold Fermi gases.
We start our calculation from a many-body Hamiltonian

that includes two- and three-nucleon interactions obtained
within the framework of chiral EFT at next-to-next-to-
leading order (N2LO) recently developed in a local form
[18–22]. Since the pure neutron system is unbound, we
confine the neutrons in an external trap (called “neutron
drops”). These systems can be very accurately solved by
starting from microscopic nuclear Hamiltonians and have
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been extensively studied with the goal of improving
energy-density functionals in extrapolating to large isospin
asymmetries [23]. We model the system starting from the
Hamiltonian

H¼−
X
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where VWSðrÞ ¼ −V0=½1þ eðr−RWSÞ=a� is a Woods-Saxon
potential with depth V0, radius RWS, and diffuseness
a ¼ 0.65 fm [24] and Vij and Vijk are two- and three-
body interactions, respectively, constructed at N2LO in
Refs. [19,21,22]. We have checked that our results are
insensitive to the precise value of the diffuseness parameter
a. Changing a by 20% in either direction changes the
energy by less than 1% in the two-neutron case.
We use the auxiliary-field diffusion Monte Carlo method

(AFDMC) [25] to project out the ground state from a
variational trial wave function whose form is
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where jRSi represent a collection of sampled 3A spatial
coordinates and the 2A spinors of the A neutrons with an
amplitude for the ↑ and ↓ spin and fcðrijÞ, Fij, and Fijk are
two- and three-body spin-dependent functions, respec-
tively, that account for the short-range correlations among
nucleons; see Ref. [26] for more details. jΦi is an
antisymmetric uncorrelated mean-field part that describes
the correct quantum numbers and asymptotic behavior of
the system. In our case, it is given by a linear combination
of Slater determinants:

hRSjΦJMi ¼
X

n

kn

�X
Dfϕαðri; siÞg

�

JM
;

ϕαðri; siÞ ¼ ΦnljðriÞ½Ylml
ðr̂iÞξsms

ðsiÞ�jmj
; ð3Þ

where ½…�JM means a linear combination of Slater
Determinants D coupled with Clebsch-Gordan coefficients
to have the quantum numbers JM. The radial components
Φnlj are obtained by solving the Hartree-Fock equations
with the Skyrme force SKM [27], Ylml

are spherical
harmonics, and ξsms

are spinors in the usual up-down
basis. For each ðJMÞ set of quantum numbers, there are
several combinations of single-particle orbitals. In particu-
lar, we included orbitals in 1S1=2, 1P3=2, 1P1=2, 1D5=2,
2S1=2, and 1D3=2. Since for shallow external potentials the
Hartree-Fock solution is unbound, we tuned the depth of
the external trap (imposed on the orbitals, which is distinct
from the external potential) to generate the orbitals in such
a way that they are bound, and then we added an additional

variational parameter to vary their width. The two- and
three-body correlations as well as the coefficients kn
are obtained by minimizing the variational energy as
described in Ref. [28]. The ground state of the system is
finally obtained with a projection in imaginary time as
ΨðτÞ ¼ exp½−ðH − ETÞτ�ΨV , where ET is a parameter that
controls the normalization (the results are independent of
the choice of ET). In the limit of τ → ∞, the lowest energy
state with the symmetry of ΨV is found (for more details,
see Ref. [26]). One important point worth emphasizing
is that the AFDMC method does not rely on a basis-
set expansion. Therefore, in the infinite-volume limit,
continuum states are automatically included.
We have calculated the energy of three and four neutrons

for different depths V0 and radii RWS. The results are
summarized in Fig. 1, and they have been obtained using
the local chiral potential of Ref. [22] with a cutoff of
R0 ¼ 1.0 fm. The plot shows the energy as a function of V0

for three (squares) and four (circles) neutrons. The blue
(upper curves for various neutron numbers), green (middle
curves), and red (lower curves) are the results obtained for
different radii RWS as indicated in the figure. The lines are
quadratic fits to the energies of four (solid lines) and three
(dashed lines) neutrons. The extrapolations to V0 → 0
obtained for the different values of RWS converge to the
same point, indicating that the results at zero well depth are
independent of the geometry of the external potential
(provided that it goes to zero at large distances and its

FIG. 1. The energy of three (squares) and four (circles) neutrons
in external Woods-Saxon potentials for varying radius RWS as a
function of the well depth V0. The blue (upper) lines correspond to
RWS ¼ 5 fm, the green (middle) lines to RWS ¼ 6 fm, and the red
(lower) lines to RWS ¼ 7.5 fm. In each case, a quadratic fit to the
AFDMC results was obtained and used to extrapolate to the zero-
well-depth limit. The inset shows calculations of four neutrons at
LO (green diamonds), NLO (orange squares), and N2LO (blue
circles) with uncertainties coming both from the quantum
Monte Carlo statistical uncertainty and from the truncation of
the chiral expansion to the order N2LO (discussed in more detail in
the text) for the Woods-Saxon radius RWS ¼ 6.0 fm.

PRL 118, 232501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

232501-2



range is larger than the nucleon-nucleon effective range).
Since we are simulating a system that is naturally unbound,
we enforce the center of mass to have no motion in order to
calculate internal energies only, as is commonly done in
quantumMonte Carlo calculations for nuclei; i.e., given the
translationally invariant Hamiltonian, the Monte Carlo
evolution is performed so that the center of mass of the
system does not move.
In order to establish the role of the cutoff R0 in the

nucleon-nucleon interaction and that of the three-body
forces, we have repeated the calculation using R0 ¼
1.2 fm and turning off the three-neutron interaction. The
results are indistinguishable from the cases shown in
Fig. 1, within statistical errors (which are smaller than
the points). Given the density of the system, this is not
totally unexpected, as we discuss below. Another source of
systematic uncertainty comes from the truncation of the
chiral expansion at N2LO. To estimate this uncertainty, we
have considered the case of four neutrons in the Woods-
Saxon well with RWS ¼ 6.0 fm and repeated our calcu-
lations at leading order (LO) and next-to-leading order
(NLO). Following Ref. [29], we estimate the uncertainty
coming from the truncation of the chiral expansion at
N2LO. We add these in quadrature to the quantum
Monte Carlo statistical uncertainties. These are displayed
as the error bars in Fig. 1 for the case with RWS ¼ 6.0 fm.
They are still smaller than the points and, within the
uncertainties we have quoted, do not affect the extrapolated
energy of the four-neutron system. The inset also shows the
LO, NLO, and N2LO results with uncertainties as described
above. One can see that, especially near the limit where the
system becomes unbound, the results are not very sensitive
to the chiral order. The fits in Fig. 1 give an energy per
particle of 0.37(7) MeV for three neutrons and 0.53
(5) MeV for four neutrons. This suggests that there could
be a trineutron resonance in nature at a lower energy than
the four-neutron resonance. We have also considered the
extrapolation from a different approach. We have multi-
plied the N2LO interaction by an overall scale factor α and
tuned α until the four neutrons were bound as in Ref. [30].
We find a scale factor of α ∼ 1.3 is sufficient to bind
the four neutrons. We have varied α and performed an
extrapolation similar to what is shown in Fig. 1 and
found an energy for the unbound system at α ¼ 1 of
E ¼ 2.0ð1.0Þ MeV, which is consistent with our results
coming from the trapped four neutrons.
Our results rely on the assumption that the extrapolation

of the energy to the zero-depth external potential may be
interpreted as a resonance energy, as suggested in Ref. [10].
To provide support for this interpretation, we have designed
a simple S-wave potential consisting of two Gaussians:

VðrÞ ¼ V1e−ðr=R1Þ2 þ V2e−½ðr−r2Þ=R2�2 ; ð4Þ

with parameters V1 ¼ −1000 MeV, V2 ¼ 865 MeV, R1 ¼
0.4981 fm, R2 ¼ 0.2877 fm, and r2 ¼ 0.9972 fm, such

that we have an attractive well at the origin and a repulsive
barrier at ∼1.0 fm. This potential gives a resonance at
ER ¼ 1.84 MeV with a width of Γ ¼ 0.282 MeV. In
Fig. 2, we have diagonalized the two-body Hamiltonian
with this simple S-wave potential plus Woods-Saxon wells
of various widths and depths. Extrapolating the bound-state
energies to zero well depth as in the realistic case, we have
found an energy interceptER ¼ 1.83ð5Þ MeV. Similarly, we
have constructed a two-body interaction that does not have
any resonance (a purely attractive Gaussian) and found that
the Woods-Saxon depth required to bind the system is
unnaturally large and that the extrapolations for individual
widths do not converge to the same energy at zero well
depth. In addition, we have calculated the energy of two
neutrons interacting via the chiral N2LO interactions in a
Woods-Saxon well and found an extrapolation compatible
with the virtual state energy of ∼0.1 MeV. These exact
calculations therefore provide evidence that our extrapola-
tion method can provide meaningful resonance energies.
We have also computed the density distribution of

neutrons in the trap. In Fig. 3, we show the neutron
distribution inside the trap for three and four neutrons in
different Woods-Saxon wells with RWS ¼ 6 fm, normalized
such that their integral is equal to the number of neutrons.
As can been seen, the density of the systems never exceeds
the value of ∼0.01 fm−3, suggesting that the system is very
dilute. In the case of infinite neutron matter [19,21,22], at
such low densities the energy per neutron is totally domi-
nated by the S-wave part of the neutron-neutron interaction,
and the results are almost independent of the two-body cutoff
R0 and the three-neutron interaction. However, it is interest-
ing to note that in the same well the three-neutron system is
always denser near the center than the four-neutron system,

FIG. 2. Energy of two neutrons trapped in various Woods-
Saxon wells interacting via a simple model potential Eq. (4)
designed to give a low-lying resonance. Also shown are the linear
extrapolations to zero well depth and the resonance energy ER
and width Γ extracted from the continuum. The black point at
V0 ¼ 0 MeV is the average and standard deviation of the
extrapolations evaluated at zero well depth.
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and the latter shows a distribution with a peak around 3 fm,
suggesting that the system is arranged on a “shell.” Notably,
this difference in shape between the three- and four-neutron
systems persists as the geometry of the trap is changed. One
possible interpretation is that in the case of three neutrons
one pair (up-down) of neutrons is sitting in the center of the
trap, and one extra neutron is orbiting around in a P state. In
the case of four neutrons, instead, the two pairs are orbiting
around the center, making the system less dense in the center.
It would be very interesting to measure these properties by
tracking the position of the neutrons. The density of four
neutrons inWoods-Saxon wells with different V0 and RWS is
shown in Fig. 4. Also in this case we can verify that the
system is very dilute.
Finally, we have performed additional calculations of

two to six neutrons in different wells adapted to qualita-
tively mimic the helium isotopes. In this model, we replace
the two protons with a Woods-Saxon potential and

calculate the energy of neutrons in such a well, interacting
with the N2LO interaction. This model has been success-
fully applied to describe the oxygen isotopic chain [31]. In
Fig. 5, we show the energy of the helium isotopic chain as
obtained from this simplified model. The results are
normalized to the 4He energy, which corresponds to the
energy of only two neutrons in the Woods-Saxon well.
Again, we keep the center of mass of the system fixed.
Considering different Woods-Saxon potentials, we find in
this case the expected odd-even pairing effects; i.e., the
systems with odd numbers of neutrons always have higher
energies than the neighboring systems with an even number
of neutrons. In this case, V0 is strongly attractive, and
compared to Fig. 1 the ordering of three versus four neutron
energies is reversed. For the helium isotopes, we attribute
this to the additional pairing attraction generated from
interacting with the 4He core. The ordering, with a lower
trineutron energy, changes in the region of small V0 where
densities are much lower than for the helium isotopes.
Our results can be interpreted from the viewpoint of

ultracold atom experiments. We observe that the extrapo-
lated resonance energies of three- and four-neutron states in
Fig. 1 scale with the number of pairs, which is NðN − 1Þ=2.
This behavior can be qualitatively understood by consid-
ering the diluteness of the system. For a large particle
numberN, the scaling with the number of pairs is consistent
with the scaling of the mean-field (MF) interaction energy
of a dilute gas of spin-1=2 fermions [32]:

EMF ¼
πa
m

N2

V
; ð5Þ

which scales asN2. Here, a is the two-body scattering length
and V is the volume. Quantum degenerate Fermi gases can

FIG. 3. One-body densities for three (blue) and four (red)
neutrons in two different Woods-Saxon wells with depths 3 MeV
(squares) and 1.5 MeV (circles) with a fixed RWS ¼ 6.0 fm.

FIG. 4. One-body densities for four neutrons in Woods-Saxon
wells with various depths and widths.

FIG. 5. Energy of two to six neutrons trapped in various Woods-
Saxon wells (circles). The wells are designed to approximately
reproduce the binding pattern of the heliumchain. For eachwell, the
two-neutron energy is taken as the reference point towhich the other
energies for that well are compared. The black squares are the
experimental values compared to the 4He energy. For 5He, we take
the value of theP3=2 resonance, thewidth ofwhich is shown in gray.
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also be engineered in experiments with ultracold atoms [33].
The mean-field energy of a two-component Fermi gas in a
harmonic trap was measured for both signs of the scattering
length using radio-frequency spectroscopy [34]. This sug-
gests that few-neutron resonances and the transition from
few- to many-body physics could be simulated in experi-
ments with ultracold atoms. Similar experiments have
already been carried out for quasi-one-dimensional systems
with an impurity, where it was found that systems with
N ≥ 4 majority atoms already develop a Fermi sea [35].
Moreover, experiments with ultracold atoms could be used
to investigate whether the properties of the density distri-
butions in Figs. 3 and 4 are governed by universal large-
scattering length physics or details of nuclear forces.
In this Letter, we have simulated two, three, and four

neutrons in external potentials and extrapolated to the zero-
well-depth limit. These extrapolations are independent of the
trap geometry, since differentWoods-Saxon widths converge
to the same energy at zerowell depth.We found a tetraneutron
resonance energy in agreement with recent measurements.
Taken together with the results from the simple S-wave
potential and the results mimicking the helium isotopic chain,
our results suggest that a trineutron resonancemay be lower in
energy than a four-neutron resonance and therefore possibly
experimentally observable. We also conclude that the effects
of three-neutron interactions are very small in these systems
due to their diluteness. In addition, the diluteness of these
systems offers the exciting possibility to shed more light on
the properties of few-neutron systems with experiments with
ultracold atomic Fermi gases.
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