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We consider the problem of detecting entanglement and nonlocality in one-dimensional (1D) infinite,
translation-invariant (TI) systems when just near-neighbor information is available. This issue is deeper
than one might think a priori, since, as we show, there exist instances of local separable states (classical
boxes) which admit only entangled (nonclassical) TI extensions. We provide a simple characterization of
the set of local states of multiseparable TI spin chains and construct a family of linear witnesses which can
detect entanglement in infinite TI states from the nearest-neighbor reduced density matrix. Similarly, we
prove that the set of classical TI boxes forms a polytope and devise a general procedure to generate all Bell
inequalities which characterize it. Using an algorithm based on matrix product states, we show how some of
them can be violated by distant parties conducting identical measurements on an infinite TI quantum state.
All our results can be easily adapted to detect entanglement and nonlocality in large (finite, not TI) 1D
condensed matter systems.
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Imagine a scenario where a number of scientists are sent
on a space explorationmission.Confined to separatevessels,
they can only probe their immediate surroundings and
communicate the outcomes of their experiments. We do
not need to specify the exact nature of those experiments, but
one could think, for instance, that each scientist is locally
interacting with the vacuum state of a global quantum field.
After conducting such experiments in different places,

what the scientists find out is that they always obtain the
same statistics, no matter where they are, as long as the
relative position between their vessels is the same. Unable
to explore the whole Universe, they postulate that this
property must hold elsewhere, in addition to the regions
they already visited. To model this assumption physically,
we picture these scientists probing different sites of an
infinite translation-invariant (TI) system.
For further elucidation, we consider the simplest such

scenario where the scientists live in a world that has one
spatial dimension, so experiments are conducted at equi-
distant points on a straight line. The question we want to
address is the following: From the information gathered by
a small neighborhood of scientists, what global properties
can they infer about the whole—infinite, unexplored—one-
dimensional (1D) TI system? In this Letter, we will focus
on two: (i) entanglement (namely, whether the local
quantum state describing the neighborhood is incompatible
with an underlying multiseparable state for the whole
system) and (ii) Bell nonlocality (namely, whether it is
impossible to simulate the statistics of the whole system
with a classical device).
Entanglement and nonlocality are two hallmark features

of our world which signify a clear departure from classical
physics [1,2]. The problem of certifying whether a given

state is entangled and/or nonlocal is important in order to
determine the type of correlations that are furnished by the
state or to characterize the state as a useful resource for
various quantum processing tasks. Most research in the
entanglement of TI quantum systems has been focused on
the entanglement between two distant sites [3–5] or
between a region of the chain and the rest of it [6]. The
multiseparability of quantum spin chains has been studied
in, e.g., Refs. [7–9], and the permutation-invariant systems
studied in Refs. [10,11], when placed on a line, can be seen
as translation invariant as well. Unfortunately, the certi-
fication of entanglement or nonlocality in the aforemen-
tioned works requires the knowledge of correlations
between arbitrarily distant sites, impossible to acquire in
the gedanken experiment described above. Prior works on
the nonclassicality of infinite translation-invariant systems
have focused on how to detect Bell nonlocality directly, i.e.,
by showing that the probed regions cannot be described
classically [12,13]. The problem of global nonlocality
detection in 1D TI systems via local measurements has
been studied for a finite number of parties [14,15].
In this Letter, we study the problem of certifying

entanglement and nonlocality in 1D infinite TI systems
from the information available to a finite number of parties
exploring the chain. As we will show, our results also apply
to the verification of entanglement and nonlocality in large
(finite but not TI) 1D quantum many-body systems, so they
may be particularly relevant for condensed matter experi-
ments. In this regard, since all our entanglement witnesses
and Bell inequalities depend on only near-neighbor two-
body correlators, the quantum states maximally minimizing
them can be prepared by cooling a condensed matter
system described by a local TI Hamiltonian [16].
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Conceptual setup.—Consider infinitely many sites dis-
tributed equidistantly along a line. Any number of con-
secutive sites of the chain, say, 1;…; n, is described by a
state ω1;…;n. Depending on the level of our description,
such a state will correspond to the following. (i) A quantum
state ρ1;2;…;n. (ii) A conditional probability distribution
(also called a box) P1;2;…;nða1; a2;…; anjx1; x2;…; xnÞ for
the values a1; a2;…; an of the local properties x1; x2;…; xn
at sites 1; 2;…; n, satisfying the nonsignaling condi-
tion [17]. To model separability and locality, we will
further require a coarser level of description: (iii) A
probability distribution P1;2;…;nða1; a2;…; anÞ for the val-
ues a1; a2;…; an of a local system property at sites
1; 2;…; n, respectively.
The quantum state ρ of an infinite chain is multisepa-

rable if it can be decomposed in the form ρ1;…;n¼R
dϱ⃗Pðϱ1;…;ϱnÞϱ1⊗���⊗ϱn, for all n, where Pðϱ1;…;ϱnÞ

is a probability density and ϱ1;…; ϱn are single-site density
matrices. We will refer to Pðϱ1;…; ϱnÞ as a separable
decomposition for the state ρ1;…;n. Alternatively, the set of
multiseparable states is the set of all states which can be
generated via quantum one-site operations and classical
communication, i.e., without the need of making the
subsystems interact.
Analogously, the box P of an infinite chain is local or

classical—that is, it does not violate any Bell inequality—
if, for any n, the box P1;2;…;nða1; a2;…; anjx1; x2;…; xnÞ
admits a local hidden variable model [2], namely, if
there exists a probability distribution μðλÞ over a hidden
variable λ such that P1;…;nða1; a2;…; anjx1; x2;…; xnÞ ¼P

λμðλÞQ1ða1jx1; λÞQ2ða2jx2; λÞ…Qnðanjxn; λÞ, where
Qkðakjxk; λÞ is a probability distribution for outcome ak
at site k. Intuitively, the set of local boxes is the set of all
black boxes which can be simulated via classical devices.
In this Letter, we will be interested mostly in TI states.

An infinite TI state Ω for the whole chain is defined as an
infinite sequence of states ðΩ1;2;…;sÞs satisfying Ωk;…;kþm¼
Ωkþ1;…;kþmþ1 for all m, k.
Our goal is, given access to Ω1;2;…;r, to determine global

properties of the infinite TI state Ω, such as its entangle-
ment (when Ω is a quantum state) or its nonlocality (when
Ω corresponds to a box). However, our results can also be
applied to finite and non-TI systems by means of the
following—widely known—symmetrization procedure,
that allows us to construct an infinite TI state Ω, given
an n-site state ω1;2;…;n.
Consider a state Γ of an infinite chain composed

by infinitely many copies of ω, i.e., Γ≡ ω1;…;n ⊗
ω1;…;n ⊗ � � �. The symbol ⊗ denotes the composition
law of the state under consideration (tensor product for
Hilbert spaces, multiplication for probability distributions,
etc.). The state Γ is clearly invariant under translations of n
sites. We can construct an infinite TI state Ω by summing Γ
with states obtained by translating Γ by k ∈ f1; 2;…; ng
sites, each timewith probability ð1=nÞ; see Fig. 1. StateΩ is

called a symmetrization of ω1;2;…;n, and the marginal
Ω1;2;…;r of r ≤ n sites is given by

Ω1;…;r¼
1

n

� Xn−rþ1

k¼1

ωk;…;rþk−1þ
Xr−1
k¼1

ωn−rþkþ1;…;n⊗ω1;…;k

�
:

ð1Þ

Many experimental setups in condensed matter physics
do not allow the experimenter to probe each individual site
of an n-site spin chain. Instead, one can estimate, via
neutron diffraction, the average two-site correlators or
static structure factors [18]:

~ωðnÞ
½r� ≡

1

n − rþ 1

Xn−rþ1

k¼1

ωk;kþr−1: ð2Þ

Given a large chain with structure factors fωðnÞ
½r� gr, the

symmetrization procedure (1) hence implies that there
exists a TI state Ω with the property

Ω1;r ¼ ωðnÞ
½r� þO

�
r
n

�
: ð3Þ

Moreover, if ω1;2;…;n is a separable quantum state or a local
or quantum box, then so isΩ. It follows that, if the structure
factors of the system violate an entanglement witness or
Bell inequality for TI systems by an amount greater than
Oðr=nÞ, then the n-site chain must be, respectively,
entangled or nonlocal. This means that, as long as we
restrict ourselves to devising two-body entanglement
witnesses and Bell inequalities, the conclusions which
we will extract regarding TI systems also apply to large
1D condensed matter systems. Moreover, the witnesses
constructed this way will be experimentally friendly, since
by construction they are maximally violated by the ground
states of local TI Hamiltonians.
With the required notation and tools in place, we now

turn to addressing our two main goals, namely, the
detection of entanglement and nonlocality in large 1D
chains by using only local information.
Entanglement detection in large 1D chains.— Given a

partial quantum state ρ1;…;r, obtained by ignoring all but r

FIG. 1. The symmetrized state for n ¼ 3. The green and yellow
rectangles highlight the partial terms that contribute to two
neighboring two-site reduced states, respectively. These are
seen to be equal (since they are the sum of the same three
partial terms).
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consecutive sites of an infinite TI quantum state, how can
we ascertain whether the total state ρ−∞;…;∞ is entangled?
Of course, if ρ1;…;r itself is entangled, e.g., if it is not
positive under partial transposition (PPT) [19], then noth-
ing needs to be done. On the other hand, it is possible, as we
illustrate below, that the total quantum state is entangled
even when ρ1;…;r is multiseparable. Given just access to
ρ1;…;r, the only question we can hope to answer is whether
there exists a total multiseparable TI state from which the
given partial state can be obtained by ignoring sites, i.e.,
whether ρ1;…;r admits a TI and separable (TIS) extension.
Before addressing this problem, let us consider a

related one: Given an r-site probability distribution
P1;…;rðx1;…; xrÞ, decide whether it can be realized as
the marginal of an infinite TI distribution Q. The solution
of this problem has been known for some time [20–23]
and remains part of the folklore of TI systems:
P1;…;rðx1;…; xrÞ admits a TI extension if and only if

P1;…;r−1ðx1;…; xr−1Þ ¼ P2;…;rðx1;…; xr−1Þ: ð4Þ
To see why this is true, consider the conditional prob-
ability distributionPðxnjx1;…; xr−1Þ≡ ½P1;…;rðx1;…; xrÞ=
P1;…;r−1ðx1;…; xr−1Þ� (if the denominator is 0, then any
distribution is allowed). We can recursively extend the
probability distribution P1;…;rðx1;…; xrÞ to a sequence
ðQ1;…;sÞs of probability distributions for increasingly larger
chains s ≥ r by means of the recurrence relation:

Qðx1;…; xsþ1Þ ¼ Qðx1;…; xsÞPðxsþ1jxs−rþ2;…; xsÞ: ð5Þ
It is readily checked that Q1;2;…;r ¼ P1;2;…;r, namely,
P1;2;…;r is a marginal of Q1;2;…;sþ1 for s ≥ r. From
Eq. (5), it also follows that Q1;2;…;sþ1 is a TI sequence
provided that Eq. (4) holds. A characterization of the
extreme points of the set T r of r-site TI marginals, i.e.,
those TI marginals which cannot be expressed as convex
combinations of other marginals, can be found in Ref. [24].
Using the solution of the classical TI marginal problem,

we will next derive a characterization of the set of states
admitting a TIS extension. Assume that ρ1;…;r does indeed
admit a TIS extension ρ, and let Pðϱ1;…; ϱnÞ define a
separable decomposition for the state ρ1;…;n. Applying the
symmetrization procedure to Pðϱ1;…; ϱnÞ, we obtain a TI
distribution that we can regard as the separable decom-
position of a chain state ρ̄, whose reduced state ρ̄1;…;r is
Oðr=nÞ-close to ρ1;…;r. Since n was arbitrary, we conclude
that, if ρ1;…;r admits a TIS extension, then we can take its
separable decomposition to be TI. Invoking Eq. (4), we thus
have that an r-site quantum state ρ1;…;r admits a TIS
extension iff it satisfies

ρ1;…;r ¼
Z

dϱ⃗Pðϱ1;…; ϱrÞϱ1 ⊗ � � � ⊗ ϱr; ð6Þ

with P1;…;r−1ðϱ1;…; ϱr−1Þ ¼ P2;…;rðϱ1;…; ϱr−1Þ.

Unfortunately, this characterization of TI separability is
not very practical to detect entanglement. Indeed, given the
state ρ1;::;r, how does one argue that it does not admit a
decomposition of the form in Eq. (6)? This motivates us to
look for simpler criteria to decide the existence of TIS
extensions.
As a first attempt, we can apply the intuition from the

characterization of TI probability distributions. Notice that
if the state ρ1;…;r has a TIS extension, then it must be
separable and satisfy

ρ1;…;r−1 ¼ ρ2;…;r: ð7Þ
Are these conditions also sufficient to guarantee the
existence of a TIS extension?
Let fσigi¼x;z;y denote the Pauli matrices. Using the

Jordan-Wigner transformation [25], it can be shown
that trðρ1;2σy ⊗ σxÞ ≤ ð2=πÞ for TI states ρ (see [24]
for the proof). Now, the separable state ϱ¼
1
2
ðjþ iihþij⊗ jþihþjþj− iih−ij⊗ j−ih−jÞ, with σxj�i ¼
�j�i, σyj � ii ¼ �j � ii, satisfies ϱ1 ¼ ϱ2 ¼ 1

2
I, but

trðϱσy⊗σxÞ¼1. Thus, separability plus condition Eq. (7)
do not even guarantee the existence of a TI extension,
separable or not.
This last observation, however, suggests a stronger

criterion for the existence of a TIS extension, namely, to
demand the state ρ1;…;r to be both separable and the
reduced state of an infinite TI state. Unfortunately, this
criterion, although necessary, is still not sufficient to
guarantee a TIS extension. To construct a counterexample,
we will first give two states, one TI and the other TIS,
which can be seen as optimally witnessing translation
invariance and translation invariance plus multiseparability.
First, in Supplemental Material [24], we identify a TI

state ρ1 that saturates the inequality trðρ1;2σy ⊗ σxÞ ≤
ð2=πÞ, with ρ11;2 ¼ 1

4
I4 þ ð1=2πÞðσy ⊗ σx þ σx ⊗ σyÞþ

ð1=π2Þσ⊗2
z .

Second, in Ref. [24] it is shown that all states ρ1;2 ∈
BðC2 ⊗ C2Þ with a TIS extension satisfy

tr

�
ρ1;2

X3
i;j¼1

Tijσi ⊗ σj

�
≤
1

2
max

θ∈½0;2π�
∥eiθT þ e−iθT†∥; ð8Þ

where Tij ∈ R. Taking Ti;j ¼ δi;2δj;1, where δ is the
Kronecker delta, implies that all states which have TIS
extensions satisfy trðρ1;2σy ⊗ σxÞ ≤ 1

2
. This bound is

tight, since it can be saturated by the TIS state ρ0≡
1
3

P
3
s¼1 ϱ

sþ1 ⊗ ϱs, where ϱ1 ¼ ϱ4, and ϱ1, ϱ2, and ϱ3 are

described, respectively, by theBloch vectors ð1= ffiffiffi
2

p Þð1;1;0Þ,
ð1= ffiffiffi

2
p Þð−1;1;0Þ, and ð1= ffiffiffi

2
p Þð1;−1;0Þ [26].

Now, consider the family of TI states ρλ ≡ λρ1þ
ð1 − λÞρ0. Clearly, for λ ∈ ð0; 1�, all those states violate
the entanglement witness hσy ⊗ σxi ≤ 1

2
. Also, it can be
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verified that ρλ1;2 is PPT for λ ≤ ð2π2=12þ 12π − π2Þ≈
0.4956. It follows that, for λ ∈ ð0; 0.4956�, the states ρλ1;2
are separable [27] and TI, but all their TI extensions are
entangled. Similar effects have been reported in Ref. [28],
where the authors construct bipartite separable states (local
boxes) which admit only entangled (nonlocal) tripartite
extensions.
Thus, even though ρλ1;2 is not entangled, its two-body

correlators tell us that there exists a finite system size n such
that ρλ1;…;n is. This raises another interesting question,
namely, how large n must be. Consider a witness of the
form trðWρ1;2Þ ≤ S and suppose that ρ1;2 violates it by an
amount Δ > 0, i.e., trðρ1;2WÞ ¼ Sþ Δ. If there exists a TI
extension ρ of ρ1;2 such that ρ1;…;n is separable, then
applying the symmetrization procedure in Eq. (1) to
ρ1;…;n would produce a separable TI state ~ρ with
~ρ1;2 ¼ ðn − 1=nÞρ1;2 þ ð1=nÞρ1 ⊗ ρ1. Since ~ρ is separable
and TI, it must satisfy trð~ρ1;2WÞ ≤ S, from which it follows
that n ≤ ½S − trðWρ⊗2

1 Þ=Δ� þ 1.
Therefore, contrary to the ordinary entanglement detec-

tion setup, the degree of violation of a linear entanglement
witness has a clear operational meaning in the TI scenario
thanks to an intrinsic notion of size: Its inverse is propor-
tional to the number n of consecutive sites which n parties
must share in order to hold an entangled resource. This
quantitative relation between nonseparability and size can
be seen to hold for arbitrary entanglement witnesses, not
just bipartite ones. It also extends to the realm of Bell
nonlocality that we will study next.
Detecting nonlocality in large 1D chains.— Before

tackling the characterization of nonlocality in TI systems,
we will argue that certain infinite TI quantum systems are
indeed nonclassical. Take any bipartite quantum state ρ ∈
BðH⊗2Þ which allows two parties to violate a Bell inequal-
ity B, and consider an infinite chain where each site k

holds two systems with Hilbert spaces HðkÞ
1 , HðkÞ

2 , with

dimðHðkÞ
1 Þ ¼ dimðHðkÞ

2 Þ ¼ dimðHÞ. If we distribute a copy
of ρ ∈ BðHðkÞ

1 ⊗ Hðkþ1Þ
2 Þ to all neighboring pairs (k,

kþ 1), we end up with a TI chain configuration with
the property that any pair of nearest neighbors can
violate B.
In this construction, the nonclassicality of the whole

chain is established by proving that the probed sites 1,2 do
not admit a local hidden variable model. Is this necessarily
the case, or are there situations where the probed sites are
classical but nonetheless incompatible with an infinite
classical TI box? We will need a complete characterization
of nonlocality in 1D TI systems in order to answer this
question.
Assume that the data available are of the form

P1;…;rða1;…; arjx1;…; xrÞ, where ak ∈ f1;…; dg and
xk ∈ f0;…; m − 1g, with the promise that it arises from
an infinite TI box. The task is to decide whether there exists

a TI box P, compatible with the experimental data and such
that P1;…;nða1;…; anjx1;…; xnÞ admits a local hidden
variable model for all n. By Fine’s theorem [29], the
existence of a local hidden variable model for P is
equivalent to the existence of a global probability distri-
bution Qða⃗1;…; a⃗∞Þ, with a⃗k ∈ f1;…; dgm such that

Qðax11 ¼ b1;…; axnn ¼ bnÞ ¼ P1;…;nðb1;…; bnjx1;…; xnÞ;
ð9Þ

for all n. As in the characterization of TIS, we apply the
symmetrization procedure over Q1;…;n in the limit n → ∞
and find that we can assume the global distribution Q to
be TI.
As a vector of probabilities, the distribution

P1;…;rða1;…; arjx1;…; xrÞ is a linear function L of
Qða⃗1;…; a⃗rÞ, whose only constraint is that it is the
marginal of a TI distribution. Since this is equivalent to
satisfying Eq. (4), it follows that we can characterize
P1;…;rða1;…; arjx1;…; xrÞ via linear programing [30].
The set of all marginal distributions

P1;…;rða1;…; arjx1;…; xrÞ arising from a 1D classical
TI chain thus forms a convex polytope, i.e., the convex
hull of a finite number of vertices. This in itself is a very
surprising result: Because of the presence of infinitely
many parties, there is no a priori reason to expect this set to
be a polytope. Actually, in the 2D case, the boundary of the
corresponding set has both flat and smoothly curved parts
and does not admit an exact computational characteriza-
tion [31].
Each polytope has a dual description in terms of a

finite set of linear inequalities or facets. The transfor-
mation between these two descriptions can be done
algorithmically albeit generally with high complexity.
Using the software PANDA [32], we enumerated the facets
of the classical polytope describing two-input–two-output
nearest-neighbor and next-to-nearest-neighbor distribu-
tions [that is, P1;2ða1; a2jx1; x2Þ, P1;3ða1; a3jx1; x3Þ, with
xk ∈ f0; 1g, ak ∈ f1; 2g]. The polytope has 32 372 facets,
which reduce to 2102 inequivalent inequalities after taking
one-site relabelings and the reflection of the chain into
consideration. Two examples are given by

IT ≡ −2E0 − 4E1 − 2E1;2
00 þ 2E1;2

01 þ 2E1;2
10 þ 2E1;2

11

þ E1;3
00 þ E1;3

11 ≥ −4; ð10Þ

IG ≡ −4E0 − 6E1 − 3E1;2
00 þ 2E1;2

01 þ 3E1;2
10 þ 2E1;2

11

þ 2E1;3
00 þ E1;3

10 þ E1;3
11 ≥ −6; ð11Þ

where Ex≡hA1
xi¼

P
a¼0;1P1ðajxÞð−1Þa and Ei;j

xy≡hAi
xA

j
yi¼P

a;b¼0;1Pi;jða;bjx;yÞð−1Það−1Þb. Here Ai
x denotes the

observable corresponding to measuring property x at site
i and assigning it the numerical value ð−1Þa.
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In order to estimate the quantum value of an inequality
given by I ≡P

x;y¼0;1
1
2
CxEx þ CAB

xy E
1;2
xy þ CAC

xy E
1;3
xy , we

associate a quantum system of dimension d ¼ 4 to each
of the sites. d ¼ 4 is chosen because we could not violate
any inequality by using quantum systems with lower
dimensions on each site. We then identify the observables
A0, A1 at each site with the operators A0 ≡Mð0; 0Þ,
A1 ≡Mðθ;ϕÞ, where

Mðθ;ϕÞ≡

0
BBBBB@

cosðθÞ sinðθÞ 0 0

sinðθÞ −cosðθÞ 0 0

0 0 cosðϕÞ sinðϕÞ
0 0 sinðϕÞ −cosðϕÞ

1
CCCCCA
: ð12Þ

This way, fixing θ;ϕ, we can map the original Bell
inequality to the 3-local Hamiltonian

H ≡X∞
i¼1

X
x;y¼0;1

1

2
CxAi

x þ CAB
xy Ai

x ⊗ Aiþ1
y þ CAC

xy Ai
x ⊗ Aiþ2

y :

ð13Þ

The minimum quantum value of the Bell inequality
(under the corresponding measurement settings) corre-
sponds to the ground state energy per site of this
Hamiltonian. The computation of the latter was carried
out over infinite matrix product states (MPS) using a
combination of the time evolving block decimation
(TEBD) method [33] and the tool OpenSource MPS [34],
which implements a variant of the density matrix renorm-
alization group (DMRG) method [35]. Using these tools,
we find the violations IT ¼ −4.1847 with θ ¼ 0.077, ϕ ¼
1.874 and IG ¼ −6.1798with θ ¼ 6.236, ϕ ¼ 4.175. More
inequalities, including violations using DMRG and lower
bounds on the nonsignaling and quantum values, can be
found in Ref. [24].
The violations obtained above may not be optimal, and a

seesawlike method, similar to Ref. [36], can be used to
enhance them. In such a method, the optimization is
divided into two rounds: In one round the measurements
are held fixed and the optimization is over the state, and in
the other round the state is held fixed and the measurements
are optimized. By repeating these two rounds, a seesaw
method usually converges to better violations than naive
methods such as the one used above. While optimization
over states by fixing the measurements can be done using
TEBD or DMRG, the optimization over measurements
with a fixed state involves further complications, because
the measurement operators make the objective function
bilinear. Fortunately, this bilinearity can be removed if, in
addition to the four-dimensional quantum state, each party
is given access to a classical TI register, as described by the
protocol given in Ref. [24]. Using this protocol, the
violation of IG can be increased to −6.1907. At first

glance, it may seem surprising that, by giving them access
to shared randomness, the parties are able to increase their
violation. Note, though, that the extreme points of TI
distributions are not necessarily deterministic.
We verified that the TI local value of IT cannot be beaten

by local tripartite boxes P1;2;3ða1; a2; a3jx1; x2; x3Þ with
P1;2ða; a0jx; x0Þ ¼ P2;3ða; a0jx; x0Þ. This means that a TI
box P can violate Eq. (10) only when the tripartite box
P1;2;3 describing the state of three consecutive sites does not
admit a classical model. In other words, IT is just detecting
standard tripartite nonlocality. IG, however, is different.
While the tripartite box Q1;2;3 generated by nearest and
next-to-nearest neighbors of the state achieving the viola-
tion is not local, TI local noise can be added to Q to turn it
into a new TI box ~Q, with ~Q1;2;3 tripartite local, while
keeping a violation of IGð ~QÞ ≈ −6.1525. Similarly to the
entanglement case, even though the behavior of the
tripartite box ~Q1;2;3 can be reproduced with classical
devices, for some n no local hidden variable model can
possibly describe an n-site box with marginals ~Q1;2;3.
Conclusions.— In this Letter, we showed how to derive

global properties of infinite 1D TI systems when only local
information is available. We provided a characterization of
the reduced density matrices of TI multiseparable states and
used it to derive entanglement witnesses for infinite TI
qubit chains. Along the way, we constructed examples of TI
states with a separable nearest-neighbors density matrix
which nonetheless admit only entangled TI extensions.
Regarding nonlocality, we fully characterized the set of
r-partite boxes obtained by probing the sites of a classical
infinite TI chain. Similarly to the entanglement case, we
identified a classical tripartite box which admits only
nonclassical TI extensions.
For future research, it would be interesting to develop

effective methods to bound the nonlocality of TI quantum
and nonsignaling systems. Also, it would be desirable to
extend some of our results to higher spatial dimensions.

M. N. and Z.W. acknowledge the FQXi grant “Towards
an almost quantum physical theory.” The authors also thank
Tamás Vértesi for stimulating discussions and Valentin
Stauber, Daniel Jaschke, and Michael Wall for their help
with part of the MPS simulation.

*zizhu.wang@oeaw.ac.at
†sukhbinder.singh@oeaw.ac.at
‡miguel.navascues@oeaw.ac.at

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and
S. Wehner, Rev. Mod. Phys. 86, 419 (2014).

[3] W. K. Wootters, Contemp. Math. 305, 299 (2002).
[4] M.M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett.

92, 087903 (2004).

PRL 118, 230401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

230401-5

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1090/conm/305
https://doi.org/10.1103/PhysRevLett.92.087903
https://doi.org/10.1103/PhysRevLett.92.087903


[5] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature
(London) 416, 608 (2002).

[6] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82,
277 (2010).

[7] P. Krammer, H. Kampermann, D. Bruß, R. A. Bertlmann, L.
C. Kwek, and C. Macchiavello, Phys. Rev. Lett. 103,
100502 (2009).

[8] M. Cramer, M. B. Plenio, and H. Wunderlich, Phys. Rev.
Lett. 106, 020401 (2011).

[9] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Nat. Phys.
12, 778 (2016).

[10] J. Tura, R. Augusiak, A. B. Sainz, T. Vértesi, M. Lewen-
stein, and A. Acín, Science 344, 1256 (2014).

[11] J. Tura, R. Augusiak, A. B. Sainz, B. Lücke, C. Klempt, M.
Lewenstein, and A. Acín, Ann. Phys. (Amsterdam) 362, 370
(2015).

[12] T. R. de Oliveira, A. M. Saguia, and M. S. Sarandy, Euro-
phys. Lett. 100, 60004 (2012).

[13] G. Tóth, O. Gühne, and H. J. Briegel, Phys. Rev. A 73,
022303 (2006).

[14] J. Tura, A. B. Sainz, T. Vértesi, A. Acín, M. Lewenstein, and
R. Augusiak, J. Phys. A 47, 424024 (2014).

[15] J. Tura, G. De las Cuevas, R. Augusiak, M. Lewenstein, A.
Acín, and J. I. Cirac, Phys. Rev. X 7, 021005 (2017).

[16] In contrast to Bell local, which is also called classical and
will be defined later, the word local here means each term in
the Hamiltonian acts on only a small neighborhood of a
given site.

[17] S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).
[18] W. Marshall and S. W. Lovesey, Theory of Thermal Neutron

Scattering: The Use of Neutrons for the Investigation of
Condensed Matter (Clarendon, Oxford, 1971).

[19] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

[20] M.M. Wolf, F. Verstraete, and J. I. Cirac, Int. J. Quantum.
Inform. 01, 465 (2003).

[21] A. G. Schlijper, J. Stat. Phys. 40, 1 (1985).
[22] M. Pivato, Can. J. Math. 53, 382 (2001).
[23] S. Goldstein, T. Kuna, J. L. Lebowitz, and E. R. Speer,

J. Stat. Phys. 166, 765 (2017).
[24] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.118.230401 for charac-
terization of extreme points, proofs of entanglement
witnesses, numerical results on more inequalities and the
seesaw method.

[25] E. P. Jordan and E. P. Wigner, Z. Phys., 47, 631 (1928).
[26] To see that this state admits a TIS extension, simply pre-

pare the state ðϱ1 ⊗ ϱ1 ⊗ ϱ1Þ⊗∞, invariant under trans-
lations by three sites, and then subject it to a random
translation t ¼ 0, 1, 2 with probability 1=3. The resulting
TIS state has the two-reduced density matrix ρ1.

[27] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.
A 223, 1 (1996).

[28] L. E. Würflinger, J.-D. Bancal, A. Acín, N. Gisin, and T.
Vértesi, Phys. Rev. A 86, 032117 (2012).

[29] A. Fine, Phys. Rev. Lett. 48, 291 (1982).
[30] E. D. Nering and A.W. Tucker, Linear Programs and

Related Problems (Academic Press, New York, 1993).
[31] Z. Wang and M. Navascués, arXiv:1703.05640.
[32] S. Lörwald and G. Reinelt, EURO J. Comput. Optim. 3, 297

(2015).
[33] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).
[34] M. L. Wall and L. D. Carr, New J. Phys. 14, 125015 (2012).
[35] U. Schollwöck, Ann. Phys. (Amsterdam), 326, 96

(2011).
[36] K. F. Pál and T. Vértesi, Phys. Rev. A 82, 022116

(2010).

PRL 118, 230401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

230401-6

https://doi.org/10.1038/416608a
https://doi.org/10.1038/416608a
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.103.100502
https://doi.org/10.1103/PhysRevLett.103.100502
https://doi.org/10.1103/PhysRevLett.106.020401
https://doi.org/10.1103/PhysRevLett.106.020401
https://doi.org/10.1038/nphys3700
https://doi.org/10.1038/nphys3700
https://doi.org/10.1126/science.1247715
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1209/0295-5075/100/60004
https://doi.org/10.1209/0295-5075/100/60004
https://doi.org/10.1103/PhysRevA.73.022303
https://doi.org/10.1103/PhysRevA.73.022303
https://doi.org/10.1088/1751-8113/47/42/424024
https://doi.org/10.1103/PhysRevX.7.021005
https://doi.org/10.1007/BF02058098
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1142/S021974990300036X
https://doi.org/10.1142/S021974990300036X
https://doi.org/10.1007/BF01010524
https://doi.org/10.4153/CJM-2001-016-3
https://doi.org/10.1007/s10955-016-1595-8
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.230401
https://doi.org/10.1007/BF01331938
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevA.86.032117
https://doi.org/10.1103/PhysRevLett.48.291
http://arXiv.org/abs/1703.05640
https://doi.org/10.1007/s13675-015-0040-0
https://doi.org/10.1007/s13675-015-0040-0
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1088/1367-2630/14/12/125015
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevA.82.022116
https://doi.org/10.1103/PhysRevA.82.022116

