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We describe a new mechanism for Lévy walks, explaining the recently observed superdiffusion of
swarming bacteria. The model hinges on several key physical properties of bacteria, such as an elongated
cell shape, self-propulsion, and a collectively generated regular vortexlike flow. In particular, chaos and
Lévy walking are a consequence of group dynamics. The model explains how cells can fine-tune the
geometric properties of their trajectories. Experiments confirm the spectrum of these patterns in
fluorescently labeled swarming Bacillus subtilis.
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Bacterial swarming is a mode of motion in which
flagellated cells move collectively over surfaces, producing
coherent swirling flows [1–6]; see Figs. 1(a) and 1(b). The
physical principles underlying bacterial swarming, as well
as the statistical properties of its dynamics, have been
extensively analyzed, both experimentally and in models
[2,7,8]. In particular, it has been shown that the continuous
motion of individual bacteria inside the swarm is undi-
rected and may be independent of the chemotactic signal-
ing systems [3,9]. Recently, by analyzing trajectories of
fluorescently labeled cells moving within a dense swarm,
Ariel et al. [10] showed that the erratic movements of
individual bacteria closely resemble Lévy walks (LWs)
(Fig. 1). This is in contrast to sparsely swimming bacteria
that move by a process called run and tumble, in which
cells move for relatively short times (typically up to a few
seconds) in straight trajectories (runs) interspersed by rapid
reorientations (tumbles) [7]. Thus, Lévy walking appears to
be related to the biological or physical mechanisms under-
lying the collective swarming phenomenon in bacteria.
The key to understanding and predicting many phenom-

ena lies with the identification of an underlying generative
mechanism [11]. Many putative mechanisms have been
identified for the generation of LWs by noninteracting
individuals [12,13]. These include external mechanisms
such as trail following with obstacles or random odor trails,
power laws that are inherent to the movement mechanisms
(e.g., the odometer in bees or slick-slip locomotion in
cells), and chaos on the neurological level. Few models
explain LWs in weakly interacting individuals [14]. It has
been suggested that isolated bacteria may follow a LW
pattern [15], but this has not been observed experimentally.
Swarming bacteria are, however, highly dense, and cell-cell
interactions dominate the dynamics. Hence, the identifica-
tion of a mechanism explaining LWs in swarming bacteria
presents a completely new scenario. Moreover, it may be

applicable to other strongly interacting self-propelled
particles or organisms.
In this Letter, we show the emergence of chaotic

dynamics in cells that are advected by the collective flow
of the swarm. The emergence of LWs in inanimate particles
moving along a chaotic [16] or time-dependent periodic
fields [17] is well known. However, these models do not
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FIG. 1. Dynamics of individual bacteria within a dense swarm.
(a) Optical microscopy image. (b) The collective flow of the
swarm reveals a swirling dynamical flow pattern. (c) A low
density of fluorescently labeled cells observed within the dense
swarm. (d) Example trajectories obtained in experiments show
superdiffusive behavior and fit a Weierstrassian Lévy walk model
well. (e) Simulated trajectories show a Lévy walk pattern
generated by chaotic dynamics.

PRL 118, 228102 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

0031-9007=17=118(22)=228102(6) 228102-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.228102
https://doi.org/10.1103/PhysRevLett.118.228102
https://doi.org/10.1103/PhysRevLett.118.228102
https://doi.org/10.1103/PhysRevLett.118.228102


take into account several physical properties that are known
to be fundamental for the bacterial ability to swarm
effectively, particularly self-propulsion and an elongated
shape [1–8]. In our model, the flow field is not chaotic itself
(it may even be periodic). Instead, chaotic motion origi-
nates from the ability of bacteria to actively shift between
flow lines using their self-generated thrust. Loosely speak-
ing, chaos results because the periodicity of orientation is
generally not rationally related to the periodicity of the
flow. In our model, the governing equations form a three-
dimensional system or autonomous ordinary differential
equations, which is the lowest dimension for an unforced
continuous dynamical system to exhibit chaotic motion. It
presents a new model for the appearance of chaos and LWs
in such systems.
A key results of our model is that the emergence of a LW

and its statistics sensitively depends on individual cell
parameters such as the cell shape and the thrust exerted by
the flagella. This observation has significant biological
implications as it shows that the geometrical properties of
cell trajectories can be fine-tuned by selection pressures. It
has been postulated that LWs can be advantageous when
foraging probabilistically without any knowledge of target
locations (also known as the Lévy flight foraging hypoth-
esis) [12,18]. Indeed, we identify some ways in which LWs
could be advantageous for swarming bacteria.
The physical properties of swarming, or collectively

swimming bacteria at high density, have been extensively
studied in experiments [1,2,4–6,8]. Based on these studies,
several models have been suggested to explain the seemingly
erratic swirling flow patterns observed in systems of self-
propelled rodlike particles and, in particular, bacteria [5,19].
In order to highlight the single cell dynamics, we take a
simplified approach and suggest a model describing the
motion of a single cell within the effective flow of the swarm.
This approach is motivated by sedimentation models which
were shown to have chaotic dynamics [20]. In particular, we
draw inspiration from Mallier and Maxey [21], who studied
the gravitational settling of spheroidal particles in an incom-
pressible, steady Stokes flow.
Our model is based on the following established

assumptions regarding the physical properties of swarming
bacteria [1,2,4–6,8]. (a) Bacteria are elongated rodlike
objects. (b) Cells are self-propelled, pushing in the direc-
tion of the axis of symmetry. Bacterial colonies are
characterized by low Reynolds numbers (typically
10−4–10−3), and the dynamics of the particles is well
approximated by the Stokes flow regime. Because of the
highly viscous medium, pushing rapidly relaxes to a
terminal speed V. (c) The swarm creates an effective flow
approximated by an array of vortices. (d) Because of their
small cell size, the stress tensor across a cell is approx-
imately uniform. The effect of a single cell on the collective
flow (which may be generated by millions of bacteria) is
negligible. To be precise, let (xðtÞ; yðtÞ) denote the position

of the cell at time t and let m̂ðtÞ ¼ ( cos θðtÞ; sin θðtÞ)T
denote a unit vector pointing in the direction of the front of
the cell. For simplicity, we initially assume a periodic flow
pattern with streamline function ψðx;yÞ¼ π−1 sinπxcosπx.
This is clearly a major simplification of the complex
bacterial flow [1,6]. Nonetheless, we show that it is
sufficient for explaining the emergence of LWs in these
systems and other essential properties of the dynamics.
More complicated stream functions, including slowly
varying ones, are studied in Sec. I of the Supplemental
Material (SM) [22]. Then, the dynamics of a test cell (or
particle) is given by

�
_x

_y

�
¼

�
sin πx cos πy

− cos πx sin πy

�
þ V

�
cos θ

sin θ

�

_θ ¼ π sin πx sin πy − 2Dπ cos πx cos πy cos θ sin θ:

ð1Þ

The first term in the equation for the velocity ð_x; _yÞT
describes advection due to the flow uðx; yÞ ¼
ð∂ψ=∂y;−∂ψ=∂xÞT . Here, ð� � �ÞT denotes the transpose
of a vector. The second term describes the self-propulsion
force acting in the direction m̂, resulting in a terminal speed
V. The first term in the equation for the radial velocity _θ
describes rotation due to the vorticity of the flow, and the
second term is rotation due to shear (also known as Jeffery’s
equation). The constant D depends on the shape of the
particle. For a prolate spheroid D ¼ ðλ2 − 1Þ=ðλ2 þ 1Þ,
where λ is the aspect ratio of the cell (approximately 5 for
B. subtilis). With the stream function described above,
each vortex is a 1 × 1 square, and a passive sphere at a
vortex center rotates once every unit time. This sets the
temporal and spatial scales. See Sec. I of the SM [22] for a
detailed derivation and generalizations to more complicated
and fluctuating flow fields. Figure 2(a) depicts the flow field
and a sample trajectory. See also Fig. S1 of the SM [22].
Simulated trajectories with biologically realistic parame-

ters, λ ¼ 5 (a 5∶1 aspect ratio) andV ¼ 1=2 (in experiments,
the speed of a single bacterium swimming individually is
about half the average speed inside a swarm [2,3,7,8,10]), are
consistent with LW movement patterns. Later, we show that
LWs occur for a wide range of aspect ratios and speeds.
Figure 2(b) shows the mean-squared displacement (MSD),
which scales as tα, exhibiting superdiffusion with an expo-
nent of approximately α ¼ 1.65. Superdiffusion is not
observed either with inert particles (V ¼ 0), in which case
trajectories are periodic, or with spheres (λ ¼ 1 or D ¼ 0),
for which ourmodel predicts normal diffusion (Fig. S2 of the
SM [22]). Indeed, tracking experiments confirm that fluo-
rescently labeled immotile bacteria (i.e., non-self-propelled
bacteria with V ¼ 0) embedded within a motile swarm
undergo normal diffusion. See Fig. S3 and Secs. IV–VI of
the SM [22]. The absence of superdiffusion in these cases
shows that LWs in swarming bacteria and in inert spherical
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particles within rotating flows have fundamentally different
origins, as the latter has been attributed to “chaos within the
flow” [28,29]. See Sec. II and Fig. S4 of the SM [22] for a
discussion on model parameters and their effects on the
dynamics.
In addition, Fig. 2(c) shows the density of displacements

pðΔt;ΔxÞ, scaled by a factor of Δt1=β. With β ¼ 1.22,
displacements with different values of Δt approximately
collapse on a master curve (compare this with the expected
β ¼ 3 − α for LWs [30]) that fits a Lévy stable distribution
with exponent 3 − β well. Figure 2(d) shows the comple-
ment of the cumulative frequency distribution for the
observed step lengths in 100 simulated trajectories together
with the best-fit Weierstrassian random walk (WRW) and
other LW models (Sec. III of the SM [22]).
Weierstrassian random walks are one of the simplest

random walks, which do not satisfy the central limit
theorem and, as such, have come to epitomize scale
invariance [31]. They are characterized by a hierarchical
step-length distribution with density [32,33]

pðlÞ ¼ q − 1

q

X∞
j¼0

q−jb−ðjþ1Þ exp ð−l=bjþ1Þ: ð2Þ

WRW satisfy a self-similar scaling form such that order-
of-magnitude longer steps occur an order of magnitude less
often; i.e., a step drawn from an exponential distribution
with mean bjþ1 is q times more likely than is a step drawn
from an exponential with the next longest mean.
Consequently, a walker will typically make a cluster of
q steps with mean b before making a step of length b2, and
so initiating a new cluster. About q such clusters separated
by a distance of order b are formed before a step of length
b2 is made, and so on. Eventually, a hierarchy of clusters
within clusters is formed. This is the hallmark of a Lévy
walk. It is readily shown that the step-length distribution,
Eq. (2), has infinite variance when b2 > q and corresponds
to a Lévy walk with exponent μ ¼ β þ 1 ¼ 1þ ln q= ln b.
By comparison, conventional LWs draw step lengths from
probability distributions with heavy power-law tails
(typically a power law with exponent μ ¼ 3 − α). The
hierarchical structure of Weierstrassian Lévy walks is
intrinsically related to the self-similar topological and
dynamical properties of the orbits [34,35].
It is now generally accepted that power spectra with

exponential frequency dependency are a unique intrinsic
and observable signature of systems exhibiting determin-
istic chaos [36,37]. Such spectra have been observed in
theoretical models of chaos and in experimental studies of
fluid flows and confined plasmas [29,38]. In accordance
with these observations, numerical solutions of Eq. (2)
confirm that trajectories are indeed chaotic. For example,
Fig. 3(a) shows that the power spectrum is exponential.
Figure 3(b) shows that the largest Lyapunov exponent is
approximately 1.2, where a positive value indicates chaos.
See Sec. VII of the SM [22] for details. Finally, Poincaré
return maps [Figs. 3(c) and 3(d)] show a complex structure,
as expected for chaotic trajectories. These observations are
robust and persist with slowly varying flow fields as well
(see Sec. I of the SM [22]). In order to confirm the
applicability of our model to swarming bacteria, we
analyzed a data set of 58 trajectories of fluorescently
labeled B. subtilis cells embedded within a high-density
swarming colony (See Secs. IV and V of the SM [22] and
Ref. [10]). We find that movement patterns closely resem-
ble a five-tier WRW with Lévy exponent 1.75 [Fig. 4(a)].
The Akaike weight for the WRW is 1.00. Moreover, the
power spectrum [Fig. 4(b)] has exponential frequency
dependency, as expected for chaotic trajectories [35,36].
Movement patterns resembling LWs have been identified

in a wide variety of organisms, from cells to humans [39].
Ariel et al. [10] were the first to report on LWs within a
group of strongly interacting organisms: a bacterial swarm.
The results of our analyses suggest that Lévy walk move-
ment patterns occurring within bacterial swarms may have
arisen freely as a mathematical consequence of the collec-
tive dynamics. Their occurrence can be attributed to the
presence of generic properties of chaos (long-lived orbits in
phase space) [34,35]; properties which would not persist in
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FIG. 2. Simulations with biologically realistic parameters. (a) A
sample trajectory of a nonspherical particle (red) in a double-
periodic flow (the black arrows). (b) The mean-squared displace-
ment shows superdiffusive behavior with an exponent of 1.65.
(c) The density of displacements pðΔt;ΔxÞ, scaled by a factor of
Δt1=β (β ¼ 1.22), fits a Lévy stable distribution with exponent
3 − β well. (d) The complement of the cumulative frequency
distribution for the observed step lengths in simulated trajectories
(∘), the best-fit WRW (green), and the best-fit Lévy walk model
(red). The WRW fit implies a power-law exponent μ ¼ 1.45.
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the presence of significant disorder or in the presence of
significant thermal fluctuations. This dispenses with the
need to understand how such complex movement patterns
could have evolved from simpler, finite-scale processes. In
this regard, Lévy walks in bacterial swarms are no different
than any of the other examples of biological LWs whose
occurrences can be attributed to seemingly innocuous,
undirected processes [13]. Nonetheless, Lévy walks in
bacterial swarms, as well as other biological and ecological
systems, could be advantageous, and in this case there
could be a selection for maintaining them [13]. In this
regard, it is noteworthy that, in contrast to most other
generative mechanisms for biological Lévy walks [13],
chaotically generated LWs are plastic (i.e., they can be
tuned, for example, by adjusting the speed of self-
propulsion), which is a prerequisite for the Lévy flight
foraging hypothesis [18]. For example, Fig. 5 depicts the
dependency of the Lévy exponent μ on the cell aspect ratio
for several biologically realistic values of pushing speeds
V. Interestingly, we find that the lowest Lévy exponent (the
most superdiffusive process) is obtained at an aspect ratio
of around 5, which is approximately the cell aspect ratio
observed in many wild-type swarming bacterial species.
This finding suggests a novel selection mechanism that
regulates the observed aspect ratio of cells as a consequence
of the physics underlying bacterial swarming.
Whether or not the Lévy walk movements are advanta-

geous for swarming bacteria remains an open question, one

which we begin to explore in Sec. VIII of the SM [22].
Our new model for the emergence of LWs as an interplay
between the dynamics of an individual and that of the
collective suggests that such Lévy walks may not be
specific to bacterial swarms, as they may also occur in
flocks and swarms of higher organisms, as exemplified
perhaps in fish schools [40]. Much early research into
collective animal behavior was concerned with the broad
question of why animals form aggregations [41]. This
research led to the realization that animals within aggre-
gations may benefit from social interactions [42], for
example, by increased protection from predators [43],
increased locomotion efficiency, and enhanced foraging
success—the many eyes hypothesis [44]. Our new results
suggest a new mechanism favoring group dynamics by way
of fundamentally changing the geometrical properties of
individual trajectories. This warrants further investigation,
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opening up new perspectives on the physical mechanisms
underlying Lévy walks as models of movement patterns
and their evolutionary origins.
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