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Theoretically, it is commonly held that in metals near a nematic quantum critical point the electronic
excitations become incoherent on the entire “hot” Fermi surface, triggering non-Fermi-liquid behavior.
However, such conclusions are based on electron-only theories, ignoring a symmetry-allowed coupling
between the electronic nematic variable and a suitable crystalline lattice strain. Here, we show that
including this coupling leads to entirely different conclusions because the critical fluctuations are mostly
cut off by the noncritical lattice shear modes. At sufficiently low temperatures the thermodynamics remain
Fermi-liquid type, while, depending on the Fermi surface geometry, either the entire Fermi surface stays
cold, or at most there are hot spots. In particular, our predictions are relevant for the iron-based
superconductors.
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Introduction.—At an Ising nematic quantum critical
point (QCP) in solids, discussed often in the context of
the iron-based superconductors, cuprates, ruthanates, and
quantum Hall systems, the ground state transforms from
one having discrete rotational symmetry to another in
which this symmetry is broken (see Fig. 1) [1–8]. An
ideal example is the tetragonal to orthorhombic structural
transition at a temperature TS in the iron superconductors
(FeSC), which is driven by electronic correlations, and
where TS → 0 with doping [6–9]. Besides the FeSC, a
nematic QCP is often invoked in the context of several other
correlatedmetals, notably the cuprates [1–3]. Consequently,
a topic of immediate relevance is how the quantum fluctua-
tions associated with this QCP affect the low temperature
properties of a metal.
At present it is widely believed that the effective

electron-electron interaction becomes long ranged near
the nematic QCP [10–13]. As a result the electrons become
unusually massive and short-lived, leading to non-Fermi-
liquid (NFL) behavior both in thermodynamics and in
single electron properties almost everywhere on the Fermi
surface. Thus, the specific heat coefficient γ ≡ −∂2F=∂T2,
where FðTÞ is the free energy, diverges as γðTÞ ∝ 1=T1=3 in
space dimension d ¼ 2, and as γ ∝ logT in d ¼ 3.
Simultaneously, almost the entire Fermi surface gets
“hot,” and is characterized by a frequency dependent self-
energy ΣðiωnÞ ∝ jωnj2=3 in d ¼ 2, and by ΣðiωnÞ ∝
ωn log jωnj in d ¼ 3.
These results are based on the simplest treatment of the

typical model describing itinerant electrons interacting with
the critical nematic collective mode of the electrons them-
selves [10]. The latter is characterized by a susceptibility

χ−10 ðq; iΩnÞ ¼ ν−10 ½rþ q2 þDðq; iΩnÞ�; ð1Þ

where ν0 is a constant with the dimension of density of
states, and q and Ωn are the dimensionless momentum
and Matsubara frequency, respectively. The dynamics
of the collective mode is damped due to the excitation
of particle-hole pairs close to the Fermi surface,

(a) (b)

(c)

FIG. 1. Ising nematic phase transition involving ðx2 − y2Þ
symmetry breaking. (a) The C4 symmetric Fermi surface (red)
distorts and becomes C2 symmetric (green) in the nematic phase.
(b) A tetragonal lattice with equivalent x̂ and ŷ directions.
(c) View of its x-y plane, which distorts in the nematic phase,
red and green circles being the original and the distorted atomic
positions, respectively. In the nematic phase the unit cell lengths
a0 and b0 along the two directions become inequivalent. ϵ is the
orthorhombic strain. Even if the electron dispersion is two
dimensional, in the presence of the lattice the third dimension
is important (see text).
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Dðq; iΩnÞ ∝ jΩnj=q. At the QCP the tuning parameter
vanishes, r ¼ 0.
More recently, a lot of work has been done to improve

the theory in d ¼ 2 [14–19]. However, these works do not
question the belief that the electronic properties are NFL
type. In fact, it is widely accepted that quantum criticality
involving a nonmodulating order parameter invariably
leads to NFL physics.
Experimentally, the existence of NFL physics is well

established in the pseudogap and strange metal phases of
the cuprates [20]. NFL behavior has also been reported for
certain, if not all, FeSC [21]. However, at present there is no
definite evidence that the NFL physics is due to a nematic
QCP, since there are other possible sources of NFL
behavior, such as spin fluctuations and Mott physics.
Nematoelastic coupling.—The link between nematic

QCP and NFL behavior is based on an electron-only
theory. In practice, in a solid the electronic environment
is sensitive to the lattice strains, and this gives rise to a
symmetry-allowed nematoelastic coupling between the
electron-nematic variable ϕ and a suitable component of
the strain tensor of the type

Hnem-latt ¼ λ

Z
drϕðrÞεðrÞ; ð2Þ

where λ is the coupling constant with the dimension of
energy. For the sake of concreteness we assume ϕ to
transform as ðx2 − y2Þ under the point group operations.
Then, εðrÞ ¼ εþ i

P
q≠0½qxuxðqÞ − qyuyðqÞ�eiq·r is the

local orthorhombic strain, u⃗ðrÞ is the atomic displacement
associated with strain fluctuation, and the uniform
macroscopic strain ε ≠ 0 in the symmetry-broken nematic
or orthorhombic phase, see Fig. 1(c). The problem is well
posed if we assume that the undistorted lattice is tetragonal,
whose elastic energy is given by FE ¼ R

ddrCijklεij
ðrÞεklðrÞ=2, i ¼ ðx; y; zÞ, where Cijkl are the bare elastic
constants (for an explicit expression in the more convenient
Voigt notation used henceforth, see Ref. [22] and the
Supplemental Material [23]).
Importantly, the above coupling shifts the nematic QCP,

and it occurs already at a finite value of r given by

r ¼ r0 ≡ λ2ν0=C0; ð3Þ
where C0 is the bare orthorhombic elastic constant. At this
point the renormalized orthorhombic elastic constant C̄0 ≡
C0 − λ2ν0=r vanishes, triggering a simultaneous orthorhom-
bic instability. We take r0 to be a small parameter; i.e., the
effective energy scale generated by the coupling λ is small
compared to the Fermi energy. Technically, this allows us to
track how the properties of the familiar electron-only theory
are recovered at a sufficiently high temperature.
Direction selective criticality.—This is an inherent prop-

erty of acoustic instabilities of a solid whereby criticality, or
the vanishing of the acoustic phonon velocity, is restricted

to certain high-symmetry directions in the Brillouin zone
such as q̂1;2 ≡ ðq̂x � q̂yÞ=

ffiffiffi
2

p
for a tetragonal-orthorhombic

transition [26]. Along the remaining directions the non-
critical strains come into play. This physics is well known
from studies of structural transitions [27–29], and its
relevance for the finite-T structural or nematic transition
in FeSC has also been pointed out [30,31]. Our goal here is
to study how this physics affects the metal’s quantum
critical properties.
In the presence of the nematoelastic coupling λ the strain

and the electron-nematic degree of freedom hybridize,
and the resulting mode inherits the above anisotropy. The
hybridization can be incorporated by integrating out the
strain fluctuations giving rise to a renormalization of
the nematic susceptibility of Eq. (1), χ−1 ¼ χ−10 − Π with

Πðq; iΩnÞ ¼
λ2

ρ

X
μ

ðaq · ûq;μÞ2=ðω2
q;μ þ Ω2

nÞ: ð4Þ

Here, ρ is the density, μ is the polarization index,
aq ≡ ðqx;−qy; 0Þ, and ûq;μ is the polarization vector for

the bare acoustic phononswith angle-dependent velocity vð0Þq̂;μ

and dispersion ωq;μ ¼ vð0Þq̂;μ · q. To lowest order in r0, the
frequency dependence of Π can be dropped. Then, both the
numerator and the denominator ofΠ areOðq2Þ. This implies
that the effect of the nematoelastic coupling is to soften the
mass of the nematic fluctuations, albeit with an angular
dependence; i.e., r → rðq̂Þ≡ r − ν0Πðq → 0;Ωn ¼ 0Þ.
Note that rðq̂Þ possesses the fourfold symmetry of the crystal
lattice in the non-nematic phase. As shown in the
Supplemental Material [23], an immediate consequence of
this angular dependent mass is that criticality is restricted to
the two high-symmetry directions q̂ ¼ �q̂1;2 only, for which
rðq̂Þ ¼ 0 at the QCP, see Fig. 2. The remaining directions
stay noncritical since rðq̂ ≠ q̂1;2Þ > 0 even at the QCP.
In the following we assume that all the bare elastic

constants are of order C0, such that the entire lattice
effect can be modeled by the single parameter r0. With
this simplification, which does not change the results

FIG. 2. Direction selective criticality. At the tetragonal-
orthorhombic transition the critical directions in momentum
space are restricted to q̂ ≈�q̂1;2 ¼ �ðq̂x � q̂yÞ=

ffiffiffi
2

p
as indicated

by the yellow cones. As a consequence, momentum scaling is
anisotropic, see text.
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qualitatively, the critical static nematic susceptibility is
given by χ−1ðq ≈ q1Þ ∝ r0ðq22 þ q2zÞ=q21 þ q21. Note that the
criticality around q2 can be deduced by q1 ↔ q2. This leads
to two important conclusions. First, even if the electronic
subsystem has two-dimensional dispersion, as in the
cuprates and the FeSC, the qz dependence of χðqÞ is
generated by the lattice. Second, the direction selective
criticality leads to anisotropic scaling with ðq2; qzÞ ∼ q21
around q1, see Fig. 2. Since each noncritical direction
scales as twice the critical one, this is equivalent to a theory
with isotropic scaling in an enhanced effective space
dimension deff ¼ 5 [26,32,33]. Thus, the effect of fluctua-
tions is weaker compared to the electron-only theory.
Fermi surface dependent dynamics.—The effect of the

lattice is indirect. Since Π is essentially static at small r0,
the critical dynamics is generated by the excitation of
particle-hole pairs in the Fermi sea, and is given by
Dðq; iΩnÞ of Eq. (1). In electron-only theories this invar-
iably leads to Landau damping along generic directions q̂,
and a dynamical exponent z ¼ 3. However, with finite λ the
lattice imposes that z is determined by Dðq ≈ q1;2; iΩnÞ,
and the question is whether there is Landau damping along
these directions. As we argue below, this depends on the
Fermi surface, leading to two different universality classes.
The important point is that the interaction between

the nematic collective mode and the electrons, given by
Hnem-el ∝

P
q;khkc

†
kþq=2ck−q=2ϕq in usual notations, is

invariably accompanied by a form factor hk that transforms
as ðk2x − k2yÞ. Note that Landau damping requires electrons
to scatter along the Fermi surface. This implies that the
damping of a collective mode with momentum along q̂
depends on the form factor at those particular points on the
Fermi surface where q̂ is tangential to the surface.
Ballistic nematicity: Consider the Fermi surface of the

cuprates, shown in Fig. 3(a). The possibility of Landau
damping with bosonic momentum q1 involve points on the
Fermi surface that intersect the kx ¼ −ky dashed line, and
along this line the formfactorhk ¼ 0.Thus, there isnoLandau
damping, and we get Dðq1; iΩnÞ ∝ Ω2

n=ðvFq1Þ2, leading to
ballistic critical dynamics at the lowest temperatures and
frequencies, with the dynamical exponent z ¼ 2 [34].
Damped nematicity: Now consider the typical Fermi

surface of the FeSC with hole and electron pockets around
the zone center, and around ðπ; 0Þ and ð0; πÞ, respectively,
as shown in Fig. 3(b). For the same reason as above, the
hole pocket does not give rise to Landau damping of the
critical mode. But, since the centers of the electron pockets
are shifted, hk is finite everywhere on the electron Fermi
surface, and the critical mode gets damped. This leads to
the standard Dðq1; iΩnÞ ∝ jΩnj=ðvFq1Þ and exponent
z ¼ 3. The damping only involves certain hot spots of
the electron pockets, on which we comment further below.
Critical thermodynamics.—For the sake of concreteness

henceforth we assume that the electronic dispersion is two
dimensional. The free energy of the nematic fluctuations is

F ¼ ðT=2ÞPq;Ωn
log χ−1ðq; iΩnÞ, and the critical phase

diagram is summarized in Fig. 4. There are two important
regions in q space: (i) q̂ ≈ q̂1;2 (shaded area in Fig. 2), and
(ii) qz ≫ ðq1; q2Þ. For region (ii), the entire nematoelastic
coupling can be neglected, and we get the susceptibility of
the electron-only theory with χ−1 ∝ r0 þ q22d þ jΩnj=q2d,
where q2d ¼ ðq1; q2Þ. Since it covers a larger volume in q
space, the contribution from region (ii) gives the leading
term. Thus, above the temperature scale TFL ∼ r3=20 EF,
where EF is the Fermi energy in temperature units, we
recover the usual electron-only theory with isotropic two-
dimensional criticality and γðTÞ ∝ 1=T1=3. However, for
T ≪ TFL this mode becomes massive giving a Fermi-liquid
(FL) type contribution γðTÞ ∝ 1=r1=20 . In this low T-regime
the nematoelastic coupling sets in, and direction selective
criticality is restricted to region (i). The associated thermo-
dynamics is as follows.
Ballistic nematicity (cuprates): In this case

Dðq ≈ q1; iΩnÞ ∝ Ω2
n=q21 þ ðq2=q1Þ2jΩnj=q1, where the

last term indicates that Landau damping requires a finite
q2 component. The competition between these two terms
yields an additional crossover scale T� ∼ r20EF. For T ≪ T�

the dynamics is ballistic, giving the scaling jΩnj ∼ q21. But
above T� the dynamics is damped, with the scaling
jΩnj ∼ r0q1. In both of these two regimes momentum
scaling ðq2; qzÞ ∼ q21=r

1=2
0 is anisotropic, and the anisotropy

extends up to the temperature TFL. The critical free energy
can be estimated from the above scaling (for a detailed

(a) (b)

FIG. 3. Fermi surface dependent critical dynamics and the
appearance of hot spots. Schematic Fermi surfaces of (a) the
cuprates and (b) the iron-based superconductors. The form factor
accompanying the interaction between the electrons and the
nematic boson hk ∼ cos kx − cos ky ¼ 0 along the dashed lines.
The critical bosons are restricted to the directions q̂1;2, see Fig. 2.
Landau damping is only possible via the creation of particle-hole
pairs at special points on the Fermi surfaces where q̂1;2 is
tangential, provided the form factor remains finite. This is the
case only for the electron pockets centered around ðπ; 0Þ and
ð0; πÞ in (b). Consequently, the critical dynamics is ballistic in (a)
and damped in (b) at the lowest energy. For the same reason hot
spots with reduced fermion lifetimes (red patches) appear only
on the electron pockets of (b). The remaining Fermi surfaces
stay “cold.”
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calculation see the Supplemental Material [23]). For
T ≪ TFL, including the noncritical contribution from
region (ii), we get

γðTÞ ¼
8<
:

c1
r1=2
0

EF
þ c2T3=2

r0E
5=2
F

; T ≪ T�;

c1
r1=2
0

EF
þ c3T4

r6
0
E5
F
; T� ≪ T ≪ TFL:

ð5Þ

Note that the T3=2 contribution appears also in the context
of elastic quantum criticality (EQC), even in the absence of
itinerant electrons [33].
Damped nematicity (FeSC): In this case there is

finite Landau damping even for q̂ ¼ q̂1 so that
Dðq ≈ q1; iΩnÞ ∝ jΩnj=ðvFqÞ. There is no physics related
to the crossover T�. For T ≪ TFL this leads to

γðTÞ ¼ c1
r1=20 EF

þ c4T2=3

r0E
5=3
F

; T ≪ TFL: ð6Þ

In the above c1;…;4 are numerical prefactors. For both
cases, once the nematoelastic coupling sets in below TFL, the
leading thermodynamics is Fermi-liquid type, while the
critical contribution is subleading, in stark contrast to what
the electron-only theory predicts. Note that in our theory we
do not expect increased entropy in the nematic phase [35,36].

Electron self-energy.—We calculate at zero temperature
the frequency dependence of the electron self-energy on the
Fermi surface, i.e., ΣkF

ðiωnÞ ∝ h2kF
Sk̂FðiωnÞ, where

Sk̂FðiωnÞ ¼
R
q;νn

χðq; iνnÞGkFþqðiωn þ iνnÞ, and G is the
electron Green’s function. As in the free energy calculation,
regions (i) and (ii) of the q space are important. At
sufficiently high frequency jωnj ≫ TFL the contribution
from region (ii) gives SðiωnÞ ∝ jωnj2=3, and the entire
Fermi surface is hot (barring the points where hkF

¼ 0).
Thus, at high frequency we recover the properties of the
electron-only critical theory. For low frequency this con-
tribution turns into a noncritical Fermi-liquid correction
with SðiωnÞ ∼ −iωn=r

1=2
0 , which guarantees that the real

part of the self-energy stays Fermi-liquid type everywhere
on the Fermi surface.
The contribution from region (i) can lead to singular self-

energy provided it involves electrons scattering parallel to
the Fermi surface. This implies that at most we expect “hot
spots” where electronic lifetimes are short, see Fig. 3.
However, for the Fermi surface of the cuprates, as well as
for the hole Fermi pockets of the FeSC, the vanishing form
factor hk at these points implies that the nematic fluctuation
induced hot spots do not survive (the familiar hot-spot or
Fermi-arc physics of the cuprates is presumably related to
either spin fluctuations or Mott physics, which are not
treated here). On the other hand, the nematic fluctuation
induced hot spots do survive on the electron pockets of the
FeSC for which hk ≈ 1. As shown in the Supplemental
Material [23], region (i) gives a subleading critical con-
tribution to the self-energy ΣðiωnÞcr ∝ jωnj4=3=r1=20 , which
leads to a reduced lifetime for electrons at these hot spots.
The arc lengths of the spots scale as ðjωnj1=3=r1=20 ÞkF, and
thus their contribution to γðTÞ ∝ T2=3, which is consistent
with Eq. (6).
Discussion.—The nematoelastic coupling in Eq. (2)

shifts not only the QCP, but also the finite-T transition
from T0 to TS, see Fig. 4. Here, T0 is the nominal nematic
transition temperature of the electron subsystem in the
absence of the coupling λ. Thus, the dimensionless
parameter r0 can be estimated as r0 ∼ ðTs − T0Þ=EF.
Experimentally, T0 is accessible from, say, electronic
Raman scattering [8]. At present there is no clear exper-
imental evidence of a nematic QCP in the cuprate phase
diagram. Consequently, iron-based superconductors are
better suited to study effects of nematoelastic coupling.
In BaFe2As2 we get T0 ∼ 90 K [37], and Ts ∼ 138 K. We
estimate the Fermi temperature from the bottom of the
electron bands as measured by photoemission, which are
around 50 meV in BaFe2As2 [38]. Thus, overestimating the
Fermi temperature TF ∼ 1000 K gives a conservative
estimate of r0 ∼ 0.05, and TFL ∼ 10 K, or more, near the
nematic QCP of BaðFe1−xCoxÞ2As2.
For the iron-based superconductors we predict Fermi-

liquid behavior below TFL in thermodynamics and in

FIG. 4. Phase diagram with the Ising-nematic QCP. r is the
control parameter. Nematoelastic coupling shifts the QCP from
r ¼ 0 (black circle) to r ¼ r0 (red circle), and the transition
temperature from T0ðrÞ to TsðrÞ. r0 ≪ 1 is the ratio between the
lattice-generated energy scale and Fermi energy EF. Above the
temperature scale TFL ∼ r3=20 EF the nematoelastic coupling can
be neglected, and the familiar electron-only theory of nematicity
giving NFL physics is appropriate. TFL is a crossover to Fermi-
liquid physics. Below TFL nematoelastic coupling is important,
and criticality is direction selective (see Fig. 2), as in elastic
quantum criticality (EQC). For the ballistic universality class,
exemplified by the cuprates, there is an additional crossover at
T� ∼ r20EF. For the damped universality class, exemplified by the
iron superconductors, T� ¼ 0. Their respective thermodynamics
are given by Eqs. (5) and (6).
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single-particle properties, except at hot spots on the
electron pockets where noncanonical Fermi-liquid behavior
is expected. Our predictions can be tested by photoemis-
sion, and by quasiparticle interference effects in tunneling
spectroscopy upon suppression of the superconducting
phase in these systems.
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