
Mott Transition in a Metallic Liquid: Gutzwiller Molecular Dynamics Simulations

Gia-Wei Chern,1,2,3 Kipton Barros,1,2 Cristian D. Batista,1,2 Joel D. Kress,1 and Gabriel Kotliar4
1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

4Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA
(Received 16 September 2015; revised manuscript received 18 December 2015; published 1 June 2017)

We present a formulation of quantum molecular dynamics that includes electron correlation effects via
the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and
molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-
field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band
narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the
Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport
properties of the atoms.
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The physics of Mott Hubbard correlations has been
intensely studied because of its conceptual relevance to
many classes of correlated materials. Previous studies have
largely assumed fixed atom positions [1]. To understand
correlated electron physics within metallic liquids, it is
imperative to include correlation effects also on the atomic
dynamics. In this Letter we incorporate the Gutzwiller
method into quantum molecular dynamics (QMD) to
elucidate the basic questions of how proximity to the
Mott transition affects correlation functions of the liquid
and how it impacts ionic and electronic transport.
The Gutzwiller variational wave function, together with

the Gutzwiller approximation (GA) [2–4] provide an effi-
cient approach to correlated materials. The basic idea is to
apply an operator to a Slater determinant, which reduces the
probability amplitude of doubly occupied states. The opti-
mum double occupancy probability is determined variation-
ally. As in the mean-field approach, the GA retains the
desirable feature of an effective single-particle picture. More
importantly, it captures crucial correlation effects, such as
bandwidth renormalization. For instance, theBrinkman-Rice
theory of the Hubbard model [5], which provided one of the
first important steps towards our understanding of the Mott
transition (MT), is based on the GA. Subsequently, the GA
has been reformulated as the saddle point solution of a slave
boson theory, leading to multiple generalizations and broad-
ened applicability [6]. Moreover, the GA can be combined
with density functional theory (DFT) [7,8]. Indeed, the
local density approximation combined with the GA has
proven to be a powerful scheme for studying real correlated
metals [9–15].
It is well known that strong intra-atomic Coulomb

interaction (U) induces electronic localization, which can
trigger iso-structural transitions with large volume collapse
in f-electron lattice systems, such as metallic Ce and Pu
[9,16–20]. Similarly, we expect that the corresponding

Mott-Anderson transition in correlated liquid metals will
induce drastic changes in static and transport properties.
Our Gutzwiller QMD (GQMD) scheme elucidates the U
dependence of both the electronic and ionic transport
coefficients. Specifically we develop a tight-binding
(TB) QMD simulation coupled to a robust Gutzwiller
solver. Tight binding is much faster, although less accurate,
than full DFT-based MD [21]. We demonstrate our
approach by investigating the effect of intra-atomic
Coulomb repulsion on the structural and dynamical proper-
ties of the simplest possible model Hamiltonian, which
describes a narrow s-band liquid metal. Besides the large
volume expansion, we find that the strongly first order
metal-insulator transition is accompanied by a drastic drop
of the ionic self-diffusion coefficient.
We consider single-orbital atoms with an on-site

Hubbard interaction U in a tight-binding formulation:

He ¼
X
i≠j

X
σ

tðjri − rjjÞc†i;σcj;σ þ U
X
i

ni;↑ni;↓

þ 1

2

X
i≠j

ϕðjri − rjjÞ þ
X
i

jpij2
2m

: ð1Þ

The first term is the electron hopping between neighboring
atoms. The operator c†i;σ creates an electron with spin

σ ¼ ↑, ↓ at the ith atom. ni;σ ¼ c†i;σci;σ is the electron
number operator and ri is the position vector of ith atom.
ϕðrÞ is the pairwise repulsive interatomic potential. The last
term of (1) is the atomic kinetic energy (m and pi are the
atomic mass and momentum, respectively). For simplicity,
we assume that both the hopping and pair-potential scale
exponentially with the interatomic distance: tðrÞ ¼
t0 expð−r=ξ1Þ and ϕðrÞ ¼ ϕ0 expð−r=ξ2Þ. In applications
to real materials, these parameters are usually determined
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by fitting to bulk band-structure ab initio calculations or to
experimental results [22]. Our scheme does not depend on
details of this parametrization.
To efficiently include correlation effects induced byU, we

adopt the GA and obtain the optimum many-electron wave
function at each time step of the MD simulation. The
optimized wave function depends only on the instantaneous
ionic configuration when we adopt the Born-Oppenheimer
approximation. Specifically, the ionic configuration frig at
each time step determines a tight-binding model parame-
trized by hopping amplitudes tij ¼ tðjri − rjjÞ. A Slater
determinant jΨ0i is obtained from the single-particle eigen-
states of the TB Hamiltonian. The correlated many-electron
wave function is approximated by jΨGi ¼

Q
iPijΨ0i, where

Pi is the Gutzwiller operator. Within the GA, which is exact
in the infinite dimension limit, the expectation value of the
off-site term acquires a renormalization: hΨGjc†i;σcj;σjΨGi¼
Ri;σRj;σhΨ0jc†i;σcj;σjΨ0i, where

Ri;σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−ρiiþdiÞðρii;σ −diÞ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diðρii;σ̄ −diÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρii;σð1−ρii;σÞ

p : ð2Þ

Here ρij;σ ¼ hΨ0jc†i;σcj;σjΨ0i is the single-particle density
matrix, ρii ¼ ρii;↑ þ ρii;↓, and di ¼ hΨGjni;↑ni;↓jΨGi is the
double occupancy probability at ith atom. The fdig variables
are treated as variational parameters to be determined by
minimizing the Gutzwiller energy functional,

EG ¼ 1

2

X
i≠j

X
σ

tijRi;σRj;σρij;σ þ U
X
i

di: ð3Þ

Since we are interested in the high-temperature (T) liquid
regime of He, we employ a finite-T extension of the GA
developed in Ref. [23]. The entropy correction due to the
Gutzwiller operator is approximated by the lower bound
ΔS ¼ lnhΨ0jPjΨ0i. Since this variational correction ΔS is
not a microscopic expression, this approach leads to an
unphysical negative low-T entropy [23]. Nonetheless it gives
a good approximation in the high-T regime of interest. More
importantly, the inclusion of this entropy correction for a
half-filled Hubbard model on a lattice reproduces the critical
endpoint of the first order metal-insulator transition line
obtained with DMFT [23]. Within this finite-T extension of
the GA, the variational parameters fdig are obtained by
minimizing the total free energy:

FG ¼ −kBT ln Tre− ~βHTB

−
X
i

�
ei ln

ei
ei0

þ qi ln
qi
qi0

þ di ln
di
di0

�
; ð4Þ

where ei and qi are the empty and single-occupancy
probabilities, and the subscript 0 denotes the probabilities
for the uncorrelated wave function. The first term is the free

energy of noninteracting fermions, whose TBHamiltonian is
renormalized by Ri;σ. The second term arises from the
correction ΔS of the Gutzwiller operators. Per the Born-
Oppenheimer approximation, we assume the electrons are
always in thermal equilibrium. Because strong correlations
can produce a drastic suppression of the effective Fermi
temperature, a strongly temperature dependent free energy
functional is essential for describing correlated electronic
degrees of freedom with MD [24].
In modern implementations of the GA, both the Slater

determinant jΨ0i and the variational parameters fdig are to
be optimized through iterations [25]. The optimization of
jΨ0i corresponds to solving the single-particle density
matrix ρij;σ of the renormalized TB Hamiltonian ~HTB,
while the parameters fdig are obtained by minimizing FG.
In our implementation of the GQMD, these two optimi-
zations are repeated until the iterations converge. An
important criterion for convergence is to verify the con-
straint hΨGjni;σjΨGi ¼ hΨ0jni;σjΨ0i. Once the optimal
solution is obtained, we compute the forces acting on
the ions,

fi ¼ −
X
j;σ

∂tðrijÞ
∂ri Ri;σRj;σρij;σ −

X
j

∂ϕðrijÞ
∂ri : ð5Þ

Given the forces, we integrate the ionic positions one
time step using the velocity Verlet method with Langevin
noises [26].
We now apply the GQMD to simulate the liquid phase of

an s-band system, such as hydrogen at high temperatures.
Since our main interest is the MT in the paramagnetic
phase, we restrict ourselves to nonmagnetic solutions. We
use a constant volume V and constant temperature MD
simulation with N ¼ 100 atoms. Periodic boundary con-
ditions are used in all simulations. The temperature T is
kept constant by using a Langevin thermostat [26] with a
rather small damping γ ∼ 10−3–10−2 fs−1. V is determined
from the average interatomic distance rs ¼ ð3V=4πNÞ1=3 ≈
1.6r0, where r0 is the equilibrium distance between two
atoms in the molecular state (e.g., H2). Here we will only
consider the half-filled case with a number of electrons
Ne ¼ N. The atoms are randomly distributed within the
simulation box at the beginning of the simulation, and the
system relaxes to equilibrium in a few thousands MD steps.
The time step is 0.5 fs and the total trajectory simulations
are of order 107 fs. Our Gutzwiller solver is rather efficient;
it takes an average of less than 10 iterations to reach
convergence in equilibrium, but the number of iterations
can be as high as a few hundreds during the relaxation
process. We have adopted a recently proposed efficient
implementation of the Gutzwiller solver [25], in which the
minimization of FG is recast into an eigenvalue problem.
This new formulation also provides the advantage of
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numerical stability and can be systematically generalized to
multiorbital systems.
Figure 1(a) shows the electron, pair potential, and kinetic

energy as a function of U. All the energies are normalized
to the average band energy W̄0. The energy scale W̄0 ¼
hjEelecjiU¼0 provides a measure of the intrinsic bandwidth
of the system, and is obtained by averaging the electronic
energy at zero Hubbard U. In equilibrium, the Langevin
thermostat ensures that the kinetic energy per atom satisfies
Ekin ¼ 3

2
kBT. Both the electronic energy Eelec and the pair-

potential Epair show a pronounced change at a critical value
Uc ≈ 2.1W̄0. The electronic energy here includes the
binding energy of the TB Hamiltonian and the Hubbard
interaction term. Above Uc, the electron energy vanishes
identically indicating that the system enters a new phase
with distinctly different electronic properties. The nature of
this MT can be inferred from the U dependence of the
average renormalization and the double-occupancy prob-
ability shown in Fig. 1(b). Here R̄2 is used as an estimate of
the electron bandwidth renormalization. The averaged
renormalization is close to one, R̄2 ≈ 1, for U ≪ W̄0 and
it quickly decreases to zero for U ≳ Uc, indicating a first-
order transition. The double occupancy remains close to the
uncorrelated value, d̄ ≈ hn↑ihn↓i ≈ 0.25, for smallU, while
it vanishes above Uc. The renormalization to zero of the
effective bandwidth shows that the metal-insulator tran-
sition is driven by electronic localization, as also evidenced
by the vanishing double occupation for U > Uc.
The radial pair distribution function gðrÞ is the proba-

bility of finding an atom at a distance r from a reference
atom [26]. At small U, the gðrÞ curves obtained from our
GQMD simulations exhibit a pronounced peak at the
equilibrium distance r0 of the binding energy eðrÞ ¼
−2tðrÞ þ ϕðrÞ (see Fig. 2). This peak arises from the
formation of quasidimer molecules in the liquid phase
[27,28]. As U increases, the dimer peak gradually dis-
appears, while the second broader peak moves toward
longer distances. The trend is consistent with the MT
scenario in which increasing Coulomb repulsion

suppresses the formation of a covalent bond as electrons
become localized. The molecular peak disappears above
U ¼ Uc ≃ 2.1W̄0 and the distribution function only exhib-
its a broad peak at r ∼ 2.2r0.
The metal-insulator transition is also demonstrated by

the U dependence of the dc conductivity σ [Fig. 3(a)]
computed with the Kubo-Greenwood formula [29,30]. The
current operator has a simple form in the tight-binding basis
[31]. While σ vanishes above Uc, the sharp increase when
U approaches Uc from the metallic side is caused by the
dimer dissociation, which is accelerated near the MT (see
Fig. 2). Similar to the case of doped semiconductors, each
isolated atom (or monomer) introduces an electronic state
inside the bonding-antibonding gap of the dimer spectrum
[32,33]. According to Mott’s approximation [34], σ is
proportional to the square of the density of states at the
Fermi level, implying that it should also be proportional to
the square of the monomer density ρm, as illustrated in a
previous work [32]. The linear increase of ρm with U for
1≲ U=W̄0 ≲ 2 explains the quadratic increase of σðUÞ in
the same interval. The combination of this effect with the
rapid suppression of σ at the MT leads to the rather sharp
peak at Uc.
The histogram of double-occupancy probability hðdÞ

shown in Fig. 3(b) exhibits an interesting bimodal distri-
bution when U approaches Uc. The two peaks of this
bimodal distribution arise from the dissociation of dimers
into monomers. The sharper dimer peak is always centered
around higher d=dmax values because the hopping ampli-
tude between the two atoms in a dimer is clearly larger than
the average hopping amplitude between monomers. The
monomer peak is much broader because of the broader
distribution of monomer-monomer and monomer-dimer
distances relative to the distribution distances between
two ions in the same dimer.

(a) (b)-0.8

-0.4

0

0.4

0 1 2 0 1 2
0

0.2

0.4

0.6

0.8

1

FIG. 1. (a) Average electronic energy Eelec, pair-potential Epair,
and kinetic energy Ekin as a function of U. The roughly constant
kinetic energy is determined from the simulation temperature (not
affected by U). (b) Average double occupancy d̄=dmax and
renormalization R̄2 as a function of U. The maximum double
occupancy is dmax ¼ hn↑ihn↓i ¼ 0.25.
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FIG. 2. Pair distribution function gðrÞ obtained from GQMD
for varying values of U. Here d is the equilibrium distance
between atoms in a molecule. The explicit value of r0 is
determined by the minimum of the energy curve eðrÞ ¼
−2tðrÞ þ ϕðrÞ. The simulation temperature is kBT ∼ 0.1W̄0.
The inset shows the potential of mean force ΦðrÞ ¼
−kBT ln gðrÞ.
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The coefficient of self-diffusion is an important measure
of the dynamics of the liquid phase. It is computed from the
velocity autocorrelation function [26],

D ¼ 1

3N

X
i

Z
∞

0

hviðtÞ · við0Þidt:

Figure 4 shows the normalized self-diffusion coefficient
obtained from our GQMD simulations. The original
increase of DðUÞ is related to the suppression of the
molecular peak in gðrÞ. At small U, the atoms form
transient bound dimers, whose larger effective mass leads
to smallerD values. In parallel, the simultaneous change of
the effective two-atom potential for increasing U modifies
the self-diffusion coefficient of the increasing number of
monomers. To demonstrate that this effect leads to the
drastic drop of D at Uc, we compute the Chapman-Enskog
self-diffusion coefficient to first order [35],

½D�1 ¼
3

8

ffiffiffiffiffiffiffiffiffiffiffi
πkBT
m

r �
1

nΩð1;1Þ

�
; ð6Þ

where n is the density and Ωð1;1Þ is the collision integral for
diffusion obtained from the effective two-atom potential of
mean force ΦðrÞ ¼ −kBT ln gðrÞ shown in the inset of
Fig. 2. ΦðrÞ includes correlation effects self-consistently
[36,37]. In general, the effect of integrating out the
electrons cannot be reduced to a simple two-body effective
interaction. Nevertheless, because the coupling to the
electronic degrees of freedom weakens near the MT (R̄2

is strongly suppressed), we expect that the effective two-
body potential provides a reasonable description in this
“weak-coupling" regime. Indeed, the result shown in the
inset of Fig. 4 agrees quite well with the self-diffusion
coefficient directly obtained from the GQMD simulation
near the MT. The same level of agreement is not obtained
for small U values because the formation of molecular
states is not accounted for in this simplified analysis.
This calculation shows that the nonmonotonic depend-

ence of DðUÞ arises from the change of ΦðrÞ with U. ΦðrÞ
is strongly attractive around r ∼ r0 for small U values due

to a large electronic contribution (see inset of Fig. 2). The
corresponding potential barrier at r≃ 1.5r0 increases the
transport cross section in the energy range E≲ kBT most
relevant for the collision integral. The height of this barrier
decreases with U because the attractive electronic compo-
nent becomes weaker. The resulting suppression of the
transport cross section explains the corresponding increase
ofDðUÞ shown in the inset of Fig. 4. This behavior changes
drastically for U ≳ Uc because of the discontinuous sup-
pression of the electronic binding energy. In this regime, the
atoms interact only via the potential ϕðrÞ. The resulting
transport cross section is similar to the U ¼ 0 case for
E≲ kBT and it is even higher for E > kBT (see inset of
Fig. 2). This explains the drastic drop of D at the MT.
MD simulations are widely used to understand funda-

mental properties of materials such as molecular structures,
transport, phase transitions, and chemical reactions. Full
quantum mechanical treatment of electron wave functions
has the potential to greatly increase the predictive power of
MD [38]. For many functional materials, including tran-
sition metal and rare-earth compounds, electron correlation
effects are known to be crucial, yet are neglected even in
state-of-the-art MD simulations. Our implementation of the
single-band case provides a proof of principle for including
electron correlations in MD simulations. Although there are
more accurate methods, e.g., MD combined with varia-
tional quantum Monte Carlo simulations [39–41] and path-
integral QMD [42,43], for the single-band atoms such as
hydrogen, the Gutzwiller MD scheme is the only method
that can be feasibly generalized to multiorbital correlated
materials of primary interest, such as d and f-electron
systems, as demonstrated recently by calculations of the
equation of state of Pr and Pu [44].
Recent developments can increase the efficiency of

GQMD. A dominant computational cost of electronic
structure solvers is calculating the density matrix from
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FIG. 3. (a) dc conductivity σ normalized to the value at U ¼ 0
as a function of U. (b) Distribution of the double-occupancy
probability d for different U values. The simulation temperature
is kBT ∼ 0.1W̄0.
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FIG. 4. Self-diffusion coefficientD as a function ofU.D0 is the
diffusion constant for U ¼ 0. The simulation temperature is
kBT ∼ 0.1W̄0. The inset shows the same self-diffusion coeffi-
cient, ½D�1=½D0�1, as approximated by the Chapman-Enskog
theory for the effective potential ΦðrÞ.
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the TB Hamiltonian. Direct diagonalization has computa-
tional cost that scales cubically with the system size. The
kernel polynomial method (KPM) can provide stochastic
estimates of the electronic free energy [45]. The gradient
transformation of the KPM energy estimation procedure
yields density matrix elements, as required by Gutzwiller,
with computational cost that scales linearly with system size
for both insulating and metallic systems [46,47]. Another
future direction is generalizing the extended Lagrangian
formalism [48,49] to theGQMDself-consistency equations.
The integration of these techniques into the GQMD seems
very promising.
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