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For nearly a century, the universal logarithmic law of the mean velocity profile has been a mainstay of
turbulent fluid mechanics and its teaching. Yet many experiments and numerical simulations are not fit
exceedingly well by it, and the question whether the logarithmic law is indeed universal keeps turning up in
discussion and in writing. Large experiments have been set up in various parts of the world to confirm or deny
the logarithmic law and accurately estimate von Kármán’s constant, the coefficient that governs it. Here, we
show that the discrepancy among flows in different (circular or plane) geometries can be ascribed to the effect
of the pressure gradient. When this effect is accounted for in the form of a higher-order perturbation, universal
agreement emerges beyond doubt and a satisfactorily simple formulation is established.
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Turbulent flow in a parallel channel or duct is the
prototype problem of wall-bounded turbulence. Be it
between parallel plane walls or in a circular pipe, this is
the contained turbulent flow with highest geometrical
symmetry, and also the one whose physical properties
are best understood. In the ideal case of infinite extension in
the other directions, the mean velocity is directed parallel to
the walls and is a function of the wall-normal coordinate
only; namely, it is a function of a single variable, the
velocity profile uðzÞ.
Although the equations governing the time evolution of

the flow are known, the Navier-Stokes equations, the only
workable way to extract its time average is to actually run a
time-resolved simulation for a long time and take its
average (so called direct numerical simulation, or DNS),
equivalent to running an experiment for a long enough time
and taking its average. In the case of a parallel flow, there
are so few parameters that a universal shape of the velocity
profile can be identified. The classical route to do so is
based on dimensional analysis coupled with a few critical
assumptions.
Nearly a century ago, Prandtl [1] recognized by his

mixing-length argument that the velocity profile in a duct
or pipe would have to be approximately logarithmic. The
theory was then given its present form based on dimensional
analysis by Millikan [2]. The physical parameters affecting
the phenomenon, in the case of an incompressible newtonian
fluid like water or air, are the density ρ and kinematic
viscosity ν of the fluid, a typical dimension h of the container
(which we shall assume to be the distance from the wall to
the symmetry axis, i.e., the radius of a pipe or the semi-
distance of two parallel plane walls), and the externally
imposed pressure gradient px. The latter is tied to the mean
shear stress τw exerted on the container walls by a simple
force balance: if A is the area of the duct’s cross section and
LP its lateral area, product of length L and perimeter P,
static equilibrium requires that −ApxL ¼ LPτw, or

px ¼ −4τw=DH; ð1Þ

where the quantity DH ¼ 4A=P goes by the name of
hydraulic diameter (because in a circular pipe it coincides
with its diameter, and in other cases, it has the role of
diameter of an equivalent pipe with the same volume to area
ratio). Therefore, for a given geometry, only one of τw or px
must be specified; nevertheless, these two quantities are
related differently in different geometries, and in what
follows, the distinction will be crucial.
Using the dimensional parameters ρ, ν, h, τw, and the

wall-normal running coordinate z, at most two independent
dimensionless groupings can be assembled. Traditionally, a
characteristic velocity is defined first, as uτ ¼

ffiffiffiffiffiffiffiffiffiffi

τw=ρ
p

, and
then a “viscous length” l ¼ ν=uτ. The ratio h=l coincides
with the Reynolds number Reτ ¼ huτ=ν, and it must be large
or the flow would not be turbulent. The classical asymptotic
theory of the turbulent velocity profile after Millikan is
constructed in the limit of Reτ → ∞. The basic ansatz is that
near the wall, in the region z ≪ h known as the “wall layer”,
the velocity profile turns out independent of height h and is
thus a dimensionless function of a single variable,

uþ ¼ fðzþÞ; ð2Þ

where uþ ¼ u=uτ and zþ ¼ z=l ¼ zuτ=ν. (Quantities
denoted by a þ are also commonly described as being
measured in “wall units”.)
Conversely, for z ≫ l, the velocity profile becomes

independent of length l, or equivalently of the fluid’s
viscosity, but with a catch: because of Galilean invariance,
having lost the reference of a wall whose possible motion
we assume the flow has become independent of, only
velocity differences can be significant. Therefore, the
difference between the centerline velocity U ¼ uðhÞ and
the generic velocity uðzÞ is defined to be a dimensionless
function of the single variable Z ¼ z=h as
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Uþ − uþ ¼ FðZÞ: ð3Þ

U − u is known as the velocity defect, and the region z ≫ l
as the “defect layer”.
Since by assumption h ≫ l, there is a range of z where

the two conditions z ≫ l and z ≪ h can be simultaneously
verified. We are then in the “overlap layer”, where the
velocity profile is independent of both h and l. Having
exhausted the available dimensional quantities, only a
dimensionless constant can be constructed in this layer.
This is von Kármán’s constant

κ ¼ uτ
zuz

ð4Þ

(involving the velocity derivative uz in place of the velocity
because, just as in the defect layer, velocity can only
be determined up to an additive constant). It follows by
integration of (4) that in the overlap layer the velocity
profile is logarithmic

uþ ¼ κ−1 logðzþÞ þ B ¼ κ−1 logðZÞ þ C; ð5Þ

where B and C are suitable integration constants allowing
a matching with the wall and defect layers, and tied to
one another as C ¼ Bþ κ−1 logðh=lÞ ¼ Bþ κ−1 logðReτÞ.
Notice that out of this reasoning, while C and FðZÞ depend
on geometry, the κ and B constants and the so called “law of
the wall” fðzþÞ must be universal.
The above theory has been the pillar of the description of

wall-bounded turbulence for nearly a century, but there are
problems. Whereas since the first experimental measure-
ments of Nikuradse [3] it was clear that von Kármán’s
constant κ is of the order of 0.4, attempts to determine
it more precisely from dedicated experiments [4,5] and,
once they became available, from DNS proved elusive.
A number of authors developed alternative explanations,
most prominent being the incomplete-similarity theory of
Barenblatt [6], leading to a power law with a Reynolds-
dependent exponent, and recently it was suggested [7]
that von Kármán’s constant κ is not universal but indeed it
takes on three different values for a channel with parallel
plane walls, for a circular pipe and for the zero-pressure-
gradient boundary layer (approximated as a parallel flow).
The difficulty is exemplified in Fig. 1, which reports, at
a particular Reynolds number Reτ ¼ 1000, the numerically
obtained velocity profiles for circular-pipe, plane pressure-
driven, and plane Couette flow and their logarithmic
derivatives, as reproduced from DNS data available in
the literature. Clearly a single set of logarithmic-law
constants cannot fit all three. In addition, the velocity
law does not look especially close to being logarithmic, as
is even more evident from its derivative which would have
to be constant if it was.

However, it should not be forgotten that the theory of
the logarithmic behavior of the overlap layer is an asymp-
totic approximation for Reτ → ∞. In this sense, every
similarity theory is incomplete, but like all asymptotic
approximations, it can be improved with the addition of
higher-order terms.
A number of authors have proposed higher-order

asymptotic expansions of the turbulent profile, starting
with Tennekes [11] and Yajnik [12], a recent review being
offered by Panton [13,14].
The most likely expansion parameter was immediately

identified as Re−1τ ¼ l=h, but in some cases, it was
uτ=U ≈ ðlog ReτÞ−1 instead, or a combination of both.
Many authors (e.g., [15]) went to a great length to identify
a suitable set of differential equations from which the
expansion could be derived, often introducing closure
assumptions (of the eddy-viscosity or mixing-length kind)
for this purpose [16]. Afzal [17] observed that Millikan’s
overlap argument can be extended to obtain higher-order
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FIG. 1. Velocity profile in wall units versus wall-normal
coordinate on a logarithmic scale (a) and its logarithmic deriva-
tive (b), for three different geometries at Reτ ¼ 1000. DNS data
for the circular pipe flow are taken from El Khoury et al. [8]. DNS
data for the pressure-driven plane parallel flow are taken from Lee
and Moser [9]. DNS data for plane Couette flow are taken from
Pirozzoli et al. [10].
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results without introducing any arbitrary assumption of
this kind.
It can be remarked that these authors mostly focused

their attention on the Reynolds-number dependence of the
velocity profile, rather than on the different behavior of
circular-pipe and plane parallel flow, and did not have
access to Couette flow data which only became available
recently. As a consequence, all asymptotic expansions of
parallel flow treated px and τw as interchangeable param-
eters. (Not so the asymptotic theories of the turbulent
boundary layer, many of which were developed after
Mellor [18]; Gorin and Sikovsky [19], for instance,
explicitly emphasized that in the boundary layer px and
Re−1τ are independent small parameters. That this is so
becomes evident in the near-separation regime, where τw
becomes negligible and px stands out as the only surviving
parameter.)
When different geometries are compared to each other,

the roles of px and τw can be separated even in purely
parallel flow. Here, continuing in the vein of Millikan’s
dimensional analysis, we can base a higher-order asymp-
totic approximation on the identification of the most
influential dimensional parameters and then of their dimen-
sionless groupings. We have seen that the influence of the
physical parameters ν (viscosity), h (geometry), and px
[pressure gradient, tied to τw and to geometry by the
relationship (1)] tends to be lost in the overlap layer, but,
whereas viscosity is “small” in the sense that uτz=ν ≫ 1,
and geometry is “far” in the sense that z ≪ h, the pressure
gradient is uniform and acts all along the velocity profile.
Therefore, we modify Millikan’s ansatz of independence
that led to (4) into the new statement:

In the overlap layer, the dimensionless quantity zuz=uτ
is almost independent of h and ν, but is acted upon by px
as by a small perturbation.

Of course that the pressure gradient can affect the
turbulent velocity profile is not in itself a new idea, as
noted before with reference to the turbulent boundary layer,
and indeed the experimental discrepancies between pipe
and plane-channel flow have been qualitatively ascribed
to its effect before, but the effect of pressure gradient has
rather been interpreted as producing a variation of the value
of von Kármán’s constant [7]. From the general standpoint
of dimensional analysis, the inclusion of an additional
dimensional parameter (px) inMillikan’s ansatz couldmean
that zuz=uτ is no longer a constant κ−1 but a new arbitrary
function of a single variable. However, by specifying thatpx
is a small perturbation, we impose this to be a linear function
of px. Then there is only one dimensionally correct linear
extension of (4), and it is

uz
uτ

¼ 1

κz
− A1

px

τw
; ð6Þ

whence, by integration, the velocity profile (5) becomes

uþ ¼ κ−1 logðzþÞ þ A1gRe−1τ zþ þ B

¼ κ−1 logðZÞ þ A1gZ þ C: ð7Þ

Here, A1 is a new universal constant, and the geometry
parameter g ¼ −hpx=τw ¼ 4h=DH makes its appearance
from the nondimensionalization. It takes on the values of
g ¼ 2 for circular pipe flow, g ¼ 1 for pressure-driven flow
between still plane walls and g ¼ 0 for turbulent Couette
flow between countermoving planewalls. (Fractional values
of g can also be achieved by imposing mixed Couette-
Poiseuille boundary conditions, and naturally occur in a
boundary layer.) In words, the assumption of a linear
dependence on px makes the velocity correction linear in
z as a consequence (as also remarked in [19] for the scope of
an expansion of the turbulent boundary layer). As may be
seen from (7), the new term proportional topx acts as a small
perturbation OðRe−1τ Þ in the wall layer, consistent with the
idea that (2) and (5) were just the leading term of an
asymptotic expansion in reciprocal powers of Reτ, and
becomes Oð1Þ in the defect layer where it blends smoothly
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FIG. 2. Velocity profile (a) and its logarithmic derivative
(b) after subtraction of the pressure-gradient term A1gzþ=Reτ,
compared with the logarithmic law with coefficients (8).

PRL 118, 224501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

224501-3



with the functionFðZÞ of (3), which is allowed to vary in its
own right fromonegeometry to another. This is analogous to
themethod ofmatched asymptotic expansions developed by
van Dyke [20] for the laminar boundary layer: the first-order
[OðRe−1τ Þ] asymptotic correction to the inner solution
becomes the first-order [OðZÞ] term of the Taylor series
for the outer solution.
Out of a fitting of available numerical and experimental

data at several values of the Reynolds number, the value of
A1 comes fairly close to unity; thus, it is tempting to set it
exactly equal to 1. Eventually, a good overall fit of (7) to the
available data is provided by

κ ¼ 0.392; A1 ¼ 1; B ¼ 4.48: ð8Þ

In order to illustrate the effect of this modification, Fig. 2
contains the same velocity profiles as Fig. 1, each dimin-
ished of the first-order correction A1gRe−1τ zþ; these profiles
must coincide much more closely across the three geom-
etries if (7) is correct. As can be seen they do, not only in
slope but also in vertical position, and the common
behavior of the three curves is at the same time closer to
logarithmic than before. [The initial, nonlogarithmic part
of the curve up to zþ ≈ 200 is the trace of the universal law
of the wall (2) with its own higher-order correction, but
this finer correction sits on the edge of what can be
estimated within the accuracy of present simulations and
experiments [21].]
In conclusion, the logarithmic law of the turbulent

velocity profile is indeed universal across different geom-
etries of wall-bounded flow, provided the perturbative
effect of pressure gradient is accounted for. The present
Eq. (7) does not contradict the classical Eq. (5) but rather
extends it with the inclusion of a higher-order term, and in
fact tends to (5) for Reτ → ∞. Nevertheless, this higher-
order term is essential when using the logarithmic law for
practical engineering purposes or when estimating von
Kármán’s constant κ from numerical or experimental data
taken at practical values of the Reynolds number. Its
omission in the classical theory justifies the doubts that
have arisen in the literature, whereas including it definitely
shows that the logarithmic law is valid and the value of κ is
universal.
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