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Anomalies in the Charge Yields of Fission Fragments from the 23¥U(n, f) Reaction
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Fast-neutron-induced fission of 233U at an energy just above the fission threshold is studied with a novel
technique which involves the coupling of a high-efficiency y-ray spectrometer (MINIBALL) to an inverse-
kinematics neutron source (LICORNE) to extract charge yields of fission fragments via y-y coincidence
spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement
for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of
Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and
suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-
neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding
and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei,
for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the

reactor antineutrino anomaly.
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We report on results which will affect current knowledge
at the interface of three separate domains: nuclear fission,
nuclear structure, and energy applications. Measurements
of fission fragment charge yields have been made using a
novel experimental technique of coupling an innovative,
inverse-kinematics, fast-neutron source, LICORNE [1,2],
to a high-resolution, high-efficiency y-ray spectrometer,
MINIBALL [3]. This has allowed a detailed spectroscopic
study of fission fragments produced via fast-neutron-
induced fission of 2*U(n, f) for the first time.

Nuclear fission is a complex, dynamical nuclear process
and there are still a number of unanswered questions which
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remain, particularly with regards to the evolution of
isotopic fragment yields as a function of excitation energy.
Experimental data are crucial to fully understand what
drives the fragment split in fission and, in particular, the
respective role of neutron and proton shells remains an
unresolved issue [4].

Second, neutron-induced fission is obviously important
for energy applications since fragment yields influence
reactor function through the total energy release, the
synthesis of neutron poisons, the decay heat, and the
production of long-lived waste. However, existing data
on isotopic and charge yields at energies relevant for future
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fast reactors (~2 MeV) are very sparse. Current libraries
used in reactor simulations are mainly based on fission
modeling and extrapolations from thermal neutron-induced
fission [5]. Furthermore, the products of fast fission
of 23U in current reactors disproportionately contribute
to reactor antineutrino spectra and may affect the measured
antineutrino deficit known as the reactor neutrino
anomaly [6,7].

Finally, the fission process and its products are also very
important for the study of the nuclear structure of neutron-
rich isotopes. Fission is a reaction mechanism employed at
radioactive beam facilities, which use either in-flight or
isotope separation on line (ISOL) techniques to study the
most neutron-rich nuclei. Both of these techniques have
difficulty in gaining spectroscopic information on neutron-
rich nuclei at moderate or high spin due to either very high
fragment recoil velocities and associated Doppler broad-
ening for an in-flight technique or studies that are usually
limited to f decay for ISOL.

The study of higher spin states of neutron-rich nuclei
requires high-resolution spectroscopy of the prompt y decay
of slowly moving or stopped fission fragments. One obvious
method is to study spontaneous fission. Extensive spectros-
copy of the fragments produced with spontaneous fission
(SF) sources »2Cf(SF) and 2**Cm(SF) were carried out
with the Euroball and Gammasphere spectrometers, leading
to a wealth of nuclear structure information [8—11]. The
y-ray spectroscopy technique was also used to measure
fragment isotopic distributions from these sources [12,13]
and gives information on fragment spin populations, impor-
tant for understanding the role of angular momentum in
fission. However, measuring using a continuous fission
source suffers from the difficulty of correcting for isomeric
decays [13]. This can lead to yield underestimates for
isotopes with isomeric states of lifetimes greater than a
few nanoseconds.

More recently, the EXILL experimental campaign using
the EXOGAM spectrometer coupled to thermal neutron
beams from the ILL reactor has produced prompt spectro-
scopic information on lighter fissile systems 2U(ny,, f)
and **'Pu(ny,, f) for nuclear structure studies [14,15]. In
contrast to fast-neutron-induced fission, the yields of these
thermal neutron-induced reactions are well known and have
been measured extensively, for example, with the
Lohengrin spectrometer [16].

To gain information on the isotopic yields from fission of
even-even (fertile) actinides 2*’Th(n, f) and >%U(n, f) is
technically challenging since a collimated, high-flux fast-
neutron source is required. These two reactions attract
additional interest due to the higher average fragment N/Z
ratio (~1.57) after neutron emission, assuming low-energy
fission, than those of either thermal neutron-induced or
spontaneous fission (~1.54). This makes them ideal for
studying the nuclear structure of the most neutron-rich
nuclei.

Recently, the aforementioned technical problem has
been solved with the development of the LICORNE
neutron source at the ALTO facility of the IPN Orsay.
Intense 'Li beams from the Tandem accelerator are used to
initiate the p(’Li, n)’Be inverse reaction to produce qua-
simonoenergetic neutrons. These are produced with a
combination of high flux and natural directionality, emitted
in narrow cones at energies of around 2 MeV in the
laboratory frame. When coupled to a high-efficiency Ge
spectrometer, the neutrons can cleanly exit without directly
hitting the sensitive detectors, thus allowing precision
spectroscopy of fast-neutron-induced reactions on samples
placed in the beam.

In this Letter we report on first measurements of the
charge yields for the 2*8U(n, f) reaction at low energy
using this innovative technique. Measurements on mass
yields only for 2¥U(n, f) were made in the 1970s,
principally using the techniques of radiochemistry to
separate isotopes close to stability in each mass chain after
irradiation of a sample with neutrons [17].

However, the only existing data on charge yields come
from prompt spectroscopy of two isotope chains [18], and
more recently from an approach using x-ray spectros-
copy [19].

The LICORNE directional neutron source in this experi-
ment used a primary beam of “Li of 16.75 MeV bom-
barding energy with a beam current of 32 nA pulsed with a
400 ns period and ~2ns duration.

The beam was incident on the LICORNE hydrogen gas
cell 3.5 cm long and with a H, pressure of 1.5 atm separated
from the beam line vacuum by a very thin tantalum foil of
2.7 ypm and surrounded by a thick Pb/Cu cylindrical
collimator designed to strongly attenuate 478 keV y rays
from Coulomb excitation of the 7Li beam in the cell (see
Fig. 1). A neutron spectrum, constrained by the kinematics

FIG. 1. Schematic diagram of the experimental coupling of the
LICORNE directional neutron source with the MINIBALL Ge
spectrometer. The main components are the high intensity ’Li
beam from the Tandem accelerator; the gas cell with a thin
tantalum entrance window surrounded by a Pb collimator and a
Pb beamstop; the sample, placed directly in the neutron beam;
and the Ge detectors of MINIBALL surrounding the sample.

222501-2



PRL 118, 222501 (2017)

PHYSICAL REVIEW LETTERS

week ending
2 JUNE 2017

of the reaction between (0.7 and 3.0 MeV, was produced in
the gas cell with a mean energy 1.72 MeV and a spread at
half maximum of approximately 1 MeV. Fluxes of around
2.0 x 10% n/scm? at the center of the MINIBALL array
were estimated from GEANT 1v [20] simulations previously
validated via ionization chamber measurements at short
distances (8-20 cm) from the source. The maximum
neutron cone opening angle was 19.5° to allow clean
escape of the neutrons from the spectrometer. A 31.35 g
depleted uranium sample (99.8% 23%U) in the shape of a
half cylinder of radius 0.57 cm and length 2.98 cm was
placed along the beam axis at 1.5 cm from the end of the
gas cell in the center of the MINIBALL spectrometer. This
detector is normally based at the Isolde facility at CERN,
but on loan to the IPN Orsay from the MINIBALL
Collaboration.

MINIBALL consisted of 24 large-volume germanium
crystals arranged in eight triple clusters at a distance of
14 cm from the array center, covering around 33% of 4zsr
in solid angle. The triple clusters were placed in a ringlike
configuration as near as possible to 90° from the beam axis
(see Fig. 1). Since the crystals have no anti-Compton
suppression, the peak-to-total ratio was low, measured to be
0.22 at 1.33 MeV after using a complex in-cluster and
cross-cluster add-back algorithm for neighboring crystals.

The total full energy peak efficiency of MINIBALL was
determined to be 5.6% at 1.33 MeV. The sample was
irradiated over a period of 11 days of effective beam time,
and prompt y rays detected in coincidence were recorded to
disk. A coincidence event was defined by applying a trigger
condition of M, > 3 different triple-cluster detectors firing
within 1.2 us in order to keep the event data acquisition rate
to a manageable ~5 kHz and the dead time to less than
10%. Each germanium crystal was typically firing at a rate
of 8 kHz, close to the maximum rate achievable without
significant pileup.

It was estimated that the fission rate in the uranium
sample was =25 kHz, based on the available neutron flux,
the known fission cross section, and the neutron energy
spectrum. The average neutron energy inducing fission
events was 1.97 MeV. During the experiment, 2.8 X
109My > 3 coincidences were collected and time refer-
enced to the beam pulsing, giving a large data set rich in
both prompt and delayed y-ray correlations.

Independent yields for detectable even-even isotopes
were deduced from measuring the intensities of all observ-
able transitions feeding each 27 state, coincident with the
corresponding 27 — 07 transition. Figure 2 shows typical
spectra observed when gating on low-lying neutron-rich
isotopes in the tellurium chain.

The measurement of yields was restricted to the subset of
40 even-even isotopes for two reasons: First, the odd
isotopes often have complicated decay schemes with the
decay to the ground state fragmented over many pathways,
making it difficult to perform a reliable intensity sum.
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FIG. 2. Typical y-ray spectra produced from gating on low-
lying transitions, particularly fission products, in this case the
neutron-rich even-even nuclei in the Te isotope chain. Coincident
y rays from the same nucleus are marked in red, along with y rays
from the most prominent binary partners in the Zr isotope chain.
The positions of the gating transitions are marked with red arrows
for the 1280, 461, and 443 keV low-lying transitions in 1347,
136Te, and '38Te, respectively.

Second, these nuclei also often contain many low-energy
transitions where measured intensities have large uncer-
tainties in this particular experiment due to the rapid drop in
efficiency at low energy caused by the self-shielding of the
uranium sample itself coupled to the background of
Compton-scattered y rays centered around 250 keV in
the unsuppressed MINIBALL spectrometer.

To obtain yields required correction of the measured y-y
coincidence intensities for the absolute detection efficiency
of MINIBALL, including the self-shielding effects of the
238U sample—a factor of 2.2 at 400 keV and a factor of 5.2
at 200 keV. The efficiency as a function of y-ray energy was
determined from a combination of MCNP [21] simulations
of MINIBALL with the uranium sample and direct mea-
surements from cascades below known isomeric decays in
particular fission fragments (e.g., 3>13%133Te) [22].

Since the LICORNE fast-neutron beam was pulsed with
a 400 ns period, corrections to measured yields could be
made due to the presence of isomeric states. In fragments
with isomers of half-lives greater than a few nanoseconds,
the lower-lying transitions are detected promptly only if fed
by transitions which bypass the isomer. Without these
corrections, measured yields for nuclei with isomers would
be significantly underestimated, typically by factors of 2 to
3. Correction required measuring the intensities of delayed
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y rays between successive beam bursts from isotopes such
as 130.1328p, 132.134135T¢ etc., and deducing the missing
yields from the known isomer half-lives.

Statistical errors on the final deduced yields come from
the fluctuations of the counts in the observed peaks and the
backgrounds on which they sit. In general, the error bars are
significantly smaller for spherical nuclei near closed shells
due to the high energies of their excited states. For mid
shell, deformed nuclei with lower excited states (e.g., Ba
and Ce), statistical errors are much greater due to the
dropping efficiency and increasing background for y rays at
lower energies. Potential systematic errors may arise from
the MINIBALL efficiency calibration, which included the
self-shielding of the sample. These errors are typically
around 5%, but increasing to as much as 20% for energies
below 200 keV. Another potential source of systematic
error comes from the absolute normalization of the yields.
This normalization can be carried out only by assuming that
there are no aggregate odd-even effects and that even-even
isotopes account for 25% of the total yield. The spectro-
scopic technique for measuring yields has two other
associated difficulties which may limit its precision: first,
the inability to measure the small fraction of direct feeding
of the 0% state, which bypasses the 2" one and may vary
between isotopes; second, a possible incomplete sum of all
of the branches which feed the 2" state, especially via
weak, unobservable feeding transitions.

The complete set of yield measurements for the detect-
able even-even isotopes produced in the experiment can be
seen in Fig. 3. The solid lines represent double-Gaussian
fits to each fragment pair (e.g., Zr/Te) with five free
parameters: widths, heights, and positions could vary, but
the areas of the two Gaussians were constrained to be equal,
thus assuming charge conservation and no proton emission
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FIG. 3. The complete set of isotopic yield measurements for
even-even nuclei observed in the experiment. The solid lines are
double-Gaussian fits to the experimental data for each element
pair (e.g., Zr/Te). The dashed lines are the predictions of the
JEFF3.1.1 evaluated data library [5].

from the deexciting fragments. For the pairs with fewer data
points available, the number of free fit parameters was
correspondingly reduced (e.g., for the Mo/Sn pair, widths
were also constrained to be equal and only four free
parameters were used). The dashed lines show the expected
yields from the JEFF3.1.1 library [5], which is based on the
fission model used by the JEFF evaluators since data at
incident neutron energies near 2 MeV are almost nonexist-
ent. From the figure, it can be seen clearly that there are
significant discrepancies in both the positions and the sizes
of the isotopic yield curves between evaluation (model) and
experiment. The discrepancies can be seen more clearly in
Fig. 4, where we obtain the charge yield and the average N
for a given Z by integrating and analyzing the experimental
fitted curves, extracting the appropriate error bars from the
residuals of the fit.

The measured charge yields for a given Z are compared
to the JEFF3.1.1 [5] and ENDEB7v1 [23] evaluations or
models and the statistical fission model, GEF [24], and can
be seen in Fig. 4. The models or evaluations reproduce the
measured charge yields with a reasonable accuracy (20%)
except for the Mo/Sn isotope pair, which represents a huge
discrepancy of 500%—-600%.

Figure 5 shows measurements of the position of the
average yield for a given charge, Z, showing how many
fewer neutrons the postemission fragments (on average)
possess than the number expected if we use the N/Z ratio
of the fissioning compound nucleus, in this case, 2°U
(N/Z = 1.598). Again, comparisons with GEF, JEFF3.1.1,
and ENDE.B7vl are made. The models all reproduce the
sawtooth structure, which looks similar to the structure
observed for fission neutron multiplicities, in correlation
with the fragment mass [25].

The dip at Z =50 is clearly caused by the closed
spherical shell. The position is reproduced to typically
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FIG. 4. (Top panel) The measured charge yields for even-Z

isotopes produced in the 8U(n, f) reaction compared to the
JEFF3.1.1 and ENDE.B7v1 libraries [5,23] and the GEF code [24].
(Bottom panel) The ratio of theory to experiment.
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FIG. 5. The deficit in the number of neutrons, v, of the average

fission fragment from the N/Z ratio of the >°U* compound
nucleus for the even-Z nuclei studied in the experiment.

0.3 neutrons or less; however, in the more extreme cases
(again, Mo and Sn), the models predict fragments that are,
on average, ~1 to 2 neutrons more neutron rich than those
measured experimentally. Again, this is an additional piece
of evidence suggesting that the models are overestimating
the role of spherical shell effects in fission at these
excitation energies.

The observed discrepancies between the experiment and the
models highlight the difficulties in reproducing experimental
data in regions where the data are very sparse. Predictions of
isotopic yields from well-measured systems using thermal
neutron-induced fission [e.g., 2> U(ng,, f) and >°Pu(ng,, f)]
are highly accurate since model parameters are tuned to
reproduce these data.

The main theoretical understanding of the mass split in
the fission process is in terms of different fission modes
which describe the path to fission over a complicated
potential energy landscape, defined as a function of the
deformation parameters of the fissioning system. The
troughs and valleys in this landscape are caused by both
spherical and deformed shell effects in the nascent frag-
ments, to which the fissioning system is attracted. The
modes are typically called standard 1 (S1), standard 2 (S2),
and superlong in the Brosa model [26]. The S1 mode is
thought to be associated with one spherical heavy fragment
near doubly magic '3>Sn and a moderately deformed light
fragment. The S2 mode is associated with a heavy
deformed fragment of around mass A~ 140 near the
deformed N = 88 shell, and a moderately deformed light
fragment. The superlong mode has a low total kinetic
energy release and is associated with symmetric fission,
and it thus begins to play a significant role only at much
higher excitation energies (typically > 10 MeV).

Our 28U(n, f) charge yield experimental data suggest an
overestimation of the S1 mode and thus an overestimation of
the importance of spherical shell effects at scission. Since so
little information on charge yields in fission is available at

these energies, the observed phenomenon (overestimation
of the S1 mode and importance of the spherical shell effects)
could prove a more general feature of neutron-induced
fission at these energies. It would thus have broader
consequences for fast-neutron-induced fission at energies
relevant for Generation IV reactors and thus have a larger
impact on simulations and designs. Alternatively, our
reported observations could be an effect confined to the
peculiarities of the 2*°U* fissioning system, even though the
microscopic shell effects in the nascent fragments should
affect all fissioning systems at such energies. Further
investigations are clearly needed.

The results of our experiment also confirm that the
experimental technique—and the 2*¥U(n, f) reaction
mechanism in particular—is an excellent method to pro-
duce or study some of the most exotic neutron-rich nuclei
where few or no excited states are known. For example,
nuclei such as 4! Te and '%Sr appear to be sufficiently well
populated as to be accessible to study with a suitable
Compton suppressed spectrometer. With this new tech-
nique, extra selectivity is gained due to the neutron beam
pulsing, which allows gating on delayed isomeric transi-
tions and suppresses the p-decay background which
accounts for approximately half of the y rays emitted in
fission. Nuclear structure information on specific isotopes
will be the subject of future publications. Furthermore,
improvements to the technique are currently under way.

Charge yields of even-Z elements in the 23U(n, f)
reaction have been measured using a new technique by
coupling a powerful y-ray spectrometer to the newly
developed LICORNE directional neutron source. The
measured yields have been compared with the JEFF3.1.1
and GEF models, which reproduce most yields to within
20%. However, for the Sn/Mo element pair, discrepancies
of up to 600% are observed. One possible explanation is an
overestimation of the strength of the S1 mode in the
models, and hence an overestimation of the importance
of spherical shell effects in fission at these excitation
energies. The results have consequences for fission model-
ing, particularly at energies of around 2 MeV relevant for
energy applications. The technique used will also be an
important future tool for the study of the nuclear structure
of neutron-rich isotopes at moderate spins.
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BMBF under Contract No. 05P15PKCIA (ISOLDE) and
Verbundprojekt 05P2015, the Research Council of Norway
under Project Grant No. 222287, and the Science and
Technology Facilities Council (STFC) funding agency, UK.
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