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The generalization of matrix product states (MPS) to continuous systems, as proposed in the
breakthrough Letter of Verstraete and Cirac [Phys. Rev. Lett. 104, 190405 (2010).], provides a powerful
variational ansatz for the ground state of strongly interacting quantum field theories in one spatial
dimension. A continuous MPS (cMPS) approximation to the ground state can be obtained by simulating a
Euclidean time evolution. In this Letter we propose a cMPS optimization algorithm based instead on energy
minimization by gradient methods and demonstrate its performance by applying it to the Lieb-Liniger
model (an integrable model of an interacting bosonic field) directly in the thermodynamic limit. We observe
a very significant computational speed-up, of more than 2 orders of magnitude, with respect to simulating a
Euclidean time evolution. As a result, a much larger cMPS bond dimension D can be reached (e.g.,
D ¼ 256 with moderate computational resources), thus helping unlock the full potential of the cMPS
representation for ground state studies.
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Over the past 25 years, progress in our understanding of
quantum spin chains and other strongly interacting quan-
tum many-body systems in one spatial dimension has been
dominated by a variational ansatz: the matrix product state
(MPS) [1–4]. The wave function jΨi of a quantum spin
chain made of N spin-1=2 degrees of freedom depends on
2N complex parameters Ψi1…iN ,

jΨi ¼
X1
i1¼0

X1
i2¼0

� � �
X1
iN¼0

Ψi1i2…iN ji1i2…iNi: ð1Þ

Accordingly, an exact numerical simulation has a computa-
tional cost that grows exponentially with the size N of the
chain. In a MPS, the 2N coefficients are expressed in terms
of the trace of a product of matrices. For instance, in a
translation invariant system, the MPS reads

Ψi1i2…iN ¼ tr½Ai1Ai2…AiN �; ð2Þ
where A0 and A1 are D ×D complex matrices. Thus, the
state jΨi of N spins is specified by just OðD2Þ variational
parameters, allowing for the study of arbitrarily large, even
infinite, systems [5,6].
A generic state of the spin chain cannot be expressed as a

MPS, because the bond dimension D limits how entangled
jΨi can be. However, ground states of local Hamiltonians
happen to be weakly entangled (e.g., they obey an
entanglement area law [7,8]) in a way that allows for an
accurate approximation by a MPS. Given a HamiltonianH,
White’s revolutionary density matrix renormalization
group (DMRG) [2,9] algorithm provided the first system-
atic way of obtaining a ground state MPS approximation by
minimizing the energy; see also Ref. [9]. Subsequently,
Refs. [10,11] proposed an algorithm to simulate time

evolution with a MPS, which in Euclidean time also
produces a ground state approximation; see also
Refs. [12–14]. An improved formulation of the time
evolution simulation by MPS was obtained in terms of
the time-dependent variational principle (TDVP) [15].
The continuous version of a MPS (cMPS), introduced by

Verstraete and Cirac [16,17], has the potential of duplicat-
ing, in the context of quantum field theories in the
continuum, the enormous success of the MPS on the
lattice. A cMPS expresses the wave function jΨi of a
quantum field on a circle of radius L as a path ordered
exponential Pe of the fields that define the theory. For a
bosonic, translation invariant system, it reads

jΨi ¼ tr½Pe
R

L

0
dxQ⊗1þR⊗ψ†ðxÞ�jΩi; ð3Þ

where ψ†ðxÞ is the bosonic field creation operator,

½ψðxÞ;ψðyÞ� ¼ 0; ½ψðxÞ;ψðyÞ†� ¼ δðx − yÞ; ð4Þ
jΩi is the empty state, i.e., ψðxÞjΩi ¼ 0, and Q and R are
D ×D complex matrices. Again, the wave function jΨi is
parametrized by just OðD2Þ parameters. A cMPS approxi-
mation to the ground state of a continuum Hamiltonian H
can then be obtained by simulating a Euclidean time
evolution with TDVP adapted to cMPS [15]. While this
algorithm and its variations work reasonably well for small
D up to D ∼ 50 [18–21], their performance is poor
compared to lattice MPS techniques.
In this Letter we propose an energy minimization

algorithm to find a cMPS approximation for ground states,
based on gradient descent techniques, and demonstrate its
performance with the Lieb-Liniger model in the thermo-
dynamic limit (L → ∞). We also propose a useful cMPS
initialization scheme, of interest on its own, based on lattice
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MPS algorithms. These proposals result in a very signifi-
cant computational speed-up with respect to Euclidean time
evolution—e.g., converging a cMPS with bond dimension
D ¼ 256 requires less time than a D ¼ 64 computation
with TDVP. For simplicity, we consider a single bosonic
field. Generalization to a fermionic field and to multiple
fields is straightforward.
Continuum limit and central canonical form.—In order

to describe the algorithm, we must first adjust the notation
in two ways. Firstly, following Ref. [16], we discretize the
interval ½0; LÞ in Eq. (3) into a regular lattice made of N ≡
L=ϵ sites and with intersite spacing ϵ, and produce a MPS
with matrices A0 and A1 [22] given, in vectorized form, by�

A0

A1

�
¼

�
1þ ϵQffiffiffi

ϵ
p

R

�
; ð5Þ

such that the original cMPS is recovered in the limit ϵ → 0

[16]. Here, A0 and A1 corresponds to having 0 or 1 particle
at the lattice site. This lattice visualization is useful in order
to manipulate the cMPS with regular MPS techniques,
provided the latter have a well-defined continuum limit
(ϵ → 0). Secondly, we use the lattice visualization to
reexpress the cMPS of an infinite system (L → ∞) in
the central canonical form [23], Eq. (7) below. For this
purpose, we consider the Schmidt decomposition of jΨi
according to a left-right partition of the resulting infinite
lattice [24],

jΨi ¼
XD
α¼1

λαjΨl;αijΨr;αi; λ1 ≥ � � � ≥ λD > 0; ð6Þ

and denote by λ a diagonal matrix with the D Schmidt
coefficients fλ1;…; λDg in its diagonal. In the central
canonical form, the MPS jΨi is expressed as the infinite
product of (vectorized) matrices:

jΨi ∼ � � � λ−1
�
A0
c

A1
c

�
λ−1

�
A0
c

A1
c

�
λ−1

�
A0
c

A1
c

�
λ−1 � � � : ð7Þ

The matrices A0
c and A1

c are chosen such that�
A0

A1

�
≡

�
A0
c

A1
c

�
λ−1 and

�
B0

B1

�
≡ λ−1

�
A0
c

A1
c

�
ð8Þ

are in the left and right canonical form [3]; namely,

ðA0Þ†A0 þ ðA1Þ†A1 ¼ 1; ð9Þ
B0ðB0Þ† þ B1ðB1Þ† ¼ 1: ð10Þ

From Eqs. (7) and (8) the standard MPS form Eq. (2) (in the
L → ∞ limit) for, e.g., a left normalized MPS is recovered:

jΨi ∼ � � �
�
A0

A1

��
A0

A1

��
A0

A1

�
� � � : ð11Þ

In the central canonical form, familiar to DMRG and
MPS practitioners working with so-called single-site
updates, a change in the matrices A0

c and A1
c on a single

site produces an equivalent change in jΨi, in the sense that
the scalar product in the lattice Hilbert space and in the
effective one-site Hilbert space are equivalent (they are
related by an isometry). This is important when applying
gradient methods, because two gradients, calculated in two
different gauges of the same state, are in general not
related by a gauge transformation and are not equivalent.
The importance of the central gauge has been realized
early on in DMRG [2] and also time evolution methods
[6,11,23,25–27].
Finally, in the continuum limit, the central canonical

form is given by [cf. Eqs. (5) and (8)]�
A0
c

A1
c

�
¼

�
λþ ϵQcffiffiffi

ϵ
p

Rc

�
: ð12Þ

Gradient descent.—Given a quantum field Hamiltonian
H, see, e.g., Eq. (15), our goal is to iteratively optimize the
cMPS in such a way that the energy

Eðλ; Qc; RcÞ≡ hΨjHjΨi
hΨjΨi ð13Þ

is minimized. Each iteration updates a triplet ðλ½n�; Q½n�
c ;

R½n�
c Þ and is made of two steps. (i) First, keeping λ fixed, we

update Qc and Rc in the direction of steepest descent given
by the gradient; namely,

�
~Q½n�

~R½n�

�
¼

�
Q½n�

c

R½n�
c

�
− αn

� ∂E=∂Q�
c

∂E=∂R�
c

�
; ð14Þ

where αn > 0 is some adjustable parameter and � denotes
complex conjugation. Crucially, the gradients ∂E=∂Q�

c and∂E=∂R�
c can be efficiently computed using standard cMPS

contraction techniques. We dynamically choose the largest
possible factor αn by requiring consistency with some
simple stability conditions (alternatively, αn can be deter-
mined by a line search). (ii) Then, from (λ½n�, ~Q½n�, ~R½n�) we
obtain (λ½nþ1�, Q½nþ1�

c R½nþ1�
c ) by bringing the cMPS repre-

sentation back into the central canonical form. This
completes an iteration, which has a cost comparable to
one time step in TDVP. We emphasize that all manipu-
lations are implemented directly in the continuum limit,
i.e., ϵ is treated as an analytic parameter throughout the
optimization, and the ϵ → 0 limit can be taken exactly due
to exact cancellation of all divergencies.
Overall, the proposed energy minimization algorithm

proceeds as follows (see Ref. [28] for technical details).
(a) Initialization.—An initial triplet of matrices

ðλ½0�; Q½0�
c ; R½0�

c Þ is obtained, either from a random initial-
ization or, as in this Letter, through Eq. (12) from a MPS
optimized on the lattice.
(b) Iteration.—The above update ðλ½n�; Q½n�

c ; R½n�
c Þ ↦

ðλ½nþ1�; Q½nþ1�
c ; R½nþ1�

c Þ is iteratively applied until attaining
a suitably converged triplet ðλ; Qc; RcÞ.
(c) Final output.—A standard cMPS representation as in

Eq. (3) is recovered by transforming the result into (Q, R).
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For instance, ðQ;RÞ ¼ ðQcλ
−1; Rcλ

−1Þ as in Eq. (8) for a
final cMPS in the left canonical form (see also Ref. [28]).
As usual in such optimization methods, convergence can

be accelerated by replacing the gradient descent in Eq. (14)
with, e.g., a nonlinear conjugate gradient update, which
reuses the gradient computed in previous steps (see
Refs. [28,29]).
Example.—To benchmark the above algorithm, we have

applied it to obtain a cMPS approximation to the ground
state of the Lieb-Liniger model [30,31],

H ¼
Z

dx

�
1

2m
∂xψ

†ðxÞ∂xψðxÞ þ μψ†ðxÞψðxÞ

þ gψ†ðxÞψ†ðxÞψðxÞψðxÞ
�
; ð15Þ

which is of both theoretical and experimental interest
and has been realized in several cold-atom experiments
[32–37]. This integrable Hamiltonian has a critical, gapless
ground state that can be described by Luttinger liquid
theory [35] and can be exactly solved by a Bethe ansatz
[30,31,38–41].
Figure 1(a) (blue dots) illustrates the fast and robust

convergence of the cMPS with the number of iterations of
steepest descent, by showing the energy density E≡ hHi,
particle density ρ≡ hψ†ψi, and reduced energy density e,

e≡ E − μρ

ρ3
¼

�∂xψ
†∂xψ

2m
þ gψ†ψ†ψψ

�.
hψ†ψi3; ð16Þ

for bond dimension D ¼ 16 and the choice of parameters
ðμ; g; mÞ ¼ ð−0.5; 1.0; 0.5Þ. For comparison, we also show
the same quantities when the cMPS is optimized instead by
a Euclidean time evolution using the TDVP algorithm
(green crosses), starting from the same initial state and
using values dτ ¼ α ¼ 0.01 for TDVP and for the steepest
descent optimization [28], respectively. These values for dτ
are typically used in common TDVP calculations for cMPS
[42]. Figure 1(b) then shows the convergence of the energy
e to the exact value eBethe obtained from the Bethe ansatz
solution [43] as a function of iteration number, again for a
steepest descent (blue dots) and TDVP (green crosses)
optimization. In this example, energy minimization con-
verges towards the ground state roughly 100 times faster
than TDVP. The difference in performance is even bigger
for larger bond dimension D and/or when no lattice
optimization is used to initialize the cMPS, in which case
TDVP may even fail to converge.
Figure 2(a) illustrates the performance of the proposed

energy minimization algorithm as a function of the bond
dimension D. For D ¼ 16, 32, 64, 128, we computed the
reduced energy density eðγÞ for several values of the
dimensionless interaction strength γ ≡ g=ρ in the range
[0.04, 80] and observed a uniform pattern of convergence
towards the exact eBetheðγÞ. For reference, a D ¼ 64

FIG. 1. Convergence of gradient optimization and of TDVP, for
D ¼ 16 and ðμ; g; mÞ ¼ ð−0.5; 1.0; 0.5Þ. We used dτ ¼ 0.01 as
time step for TDVP and α ¼ 0.01 for the steepest descent
optimization [28]. The time per iteration for either method is
0.2 s. (a) Energy density E (main figure) and particle density ρ
(inset) as a function of iteration number. (b) Convergence of
reduced energy density e towards the exact value eBethe as a
function of iteration number [43].

FIG. 2. (a) Reduced energy density e as a function of the
dimensionless interaction strength γ ≡ g=ρ and cMPS bond
dimensions D. The solid line is the exact result from a Bethe
ansatz calculation. Data points for different D are on top of each
other. The inset shows the error Δe≡ ðe − eBetheÞ=eBethe. (b) Rel-
ative error Δe in the reduced energy density (filled circles) and
bipartite entanglement S (empty squares) of a left-right biparti-
tion, as a function of the bond dimension. (c) Superfluid
correlation function, showing saturation to a constant at a finite
correlation length ξ, which diverges with growing D.
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optimization employing a nonlinear conjugate gradient
optimization [28] (stopped once the energy E has con-
verged to 9 digits) takes ∼6 min on a desktop computer
[44], including both the lattice initialization (∼2 min) and
the nonlinear conjugate gradient optimization in the con-
tinuum (∼4 min). This value of the bond dimension is the
largest reported so far using TDVP [19,45].
Figures 2(b) and 2(c) specialize to γ ∼ 2.3, e ∼ 1.2, and

consider even larger values of the bond dimensionsD, up to
256, to reproduce well-understood finite-D effects of
the cMPS representation [45–48]. Figure 2(b) shows the
relative error Δe in the reduced energy density and the
entanglement entropy S≡−

P
αðλαÞ2 log2ðλαÞ2 across a left-

right bipartition, Eq. (6). As expected, Δe vanishes with D
as a power law, Δe ∼Dp1 , whereas the entanglement
entropy diverges logarithmically, S ∼ logD. Figure 2(c)
shows the superfluid correlation function hψ†ðxÞψð0Þi=ρ,
which is seen to saturate to a finite value jhψij2=ρ at some
distance ξ, another well-understood artifact of the (c) MPS
representation at finite bond dimension D [45–48]. This
artificial finite correlation length ξ is seen to diverge with
growing D as a power law, ξ ∼Dp2 .
Once we have established that the optimized cMPS is an

accurate approximation to the ground state, we can move to
exploring other properties of the model. Figure 3 shows the
superfluid correlation function hψ†ðxÞψð0Þi=ρ and pair
correlation function hnðxÞnð0Þi=ρ2, respectively, for D ¼
128 and different values of the dimensionless interaction
strength γ. With growing γ, we observe an increasingly
rapid decay in the superfluid correlation function. The pair
correlation function develops typical oscillations that are
related to the fermionic nature of the ground state of the
Tonks-Girardeau gas [49] at g ¼ ∞.
We can also estimate both the central charge c and the

Luttinger parameter K, which can be used to uniquely
identify the conformal field theory that characterizes the
universal low-energy–large-distance features of the model.
The central charge c can be estimated from the slope of
SðDÞ (see Ref. [45]). For γ ≈ 2.3 we obtain a value of
c ≈ 0.997, to be compared with the exact value c ¼ 1. The
Luttinger parameter K [35,50] is obtained from fitting
log½hψ†ðxÞψð0Þi=ρ� versus logðxÞ [20], where we choose x
to lie in the region where hψ†ðxÞψð0Þi=ρ exhibits
power-law decay. For D ¼ 256 and γ ≈ 2.3, we obtain

K ¼ 2.362� 0.002. A value of K ¼ 2.378 was obtained in
Ref. [50] from the weak-coupling approximation of the
Bethe ansatz solution. The relative difference to our result
is ∼0.7%.
Discussion.—The cMPS is a powerful variational ansatz

for strongly interacting quantum field theories in 1þ 1
dimensions [16]. In this Letter we have proposed a cMPS
energy minimization algorithm with much better perfor-
mance, in terms of convergence and the attainable bond
dimension D, than previous optimization algorithms based
on simulating a Euclidean time evolution. For benchmark-
ing purposes, we have applied it to the exactly solvable
Lieb-Liniger model, but it performs equally well for a large
variety of (nonexactly solvable) field theories [28]. We
envisage that this algorithm will play a decisive role in
unlocking the full potential of the cMPS representation for
ground state studies in the continuum.
Our algorithm works best by initializing the cMPS

through an energy optimization on the lattice and by
translating the resulting MPS from the lattice to the
continuum through Eq. (5). A natural question is then
whether the continuum algorithm is needed at all. That is,
perhaps—one may wonder—a MPS algorithm working at
finite lattice spacing ϵ can already provide a cMPS
representation [through Eq. (5)] that can be made arbitrarily
close to the one obtained with the continuum algorithm by
decreasing ϵ sufficiently. The answer is that this is not
possible: lattice algorithms necessarily become unstable as
the lattice spacing ϵ is reduced. This can be understood
from a simple scaling argument. In discretizing, e.g., the
Hamiltonian H of Eq. (15) into a lattice, the nonrelativistic
kinetic term

R ∂xψ
†∂xψ is seen to diverge with ϵ as ∼1=ϵ2,

while the rest of the terms in the Hamiltonian have a milder
scaling. For small ϵ this creates a large range of energy
scales that lead to numerical instability. This effect is
compounded with a second fact, revealed by Eq. (5).
For small ϵ the MPS matrix A0 ¼ 1þ ϵQ is made of
two pieces: a constant part 1 made of 0’s and 1’s and the
variational parameters ϵQ, which are of order ϵ. Thus, the
first part 1 shadows the second one, in that the numerical
precision on the variational parameters Q is reduced by a
factor ϵ when embedded in matrix A0. The observant
reader may then wonder if these problems could be
prevented by just changing variables, to work instead with
Q ¼ ðA0 − 1Þ=ϵ. This is indeed the case, and also the
essence of working with the cMPS representation directly,
as we do in the proposed energy minimization algorithm.
Notice that lattice MPS techniques can be successfully
applied to ground states [51–55] and real-time evolution
[56,57] of discretized field theories. However, these sim-
ulations are conducted at sufficiently large ϵ and are often
plagued with finite ϵ-scaling analysis, which is not neces-
sary when working directly with a cMPS.
We have seen that the cMPS energy minimization

algorithm drastically outperforms TDVP at the task of
approximating the ground state (we emphasize that the
TDVP remains an extremely useful tool, e.g., to simulate

FIG. 3. (a) Superfluid correlation function and (b) pair
correlations as a function of the interaction strength γ, for
μ ¼ −0.5, D ¼ 128.
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real-time evolution, for which no other method exists).
This result did not come as a surprise: on the lattice, MPS
energy minimization algorithms, including DMRG, have
long been observed to converge to the ground state much
faster than time evolution simulation algorithms [5].
We expect the new algorithm to also produce a significant
speed-up both for inhomogeneous Hamiltonians [where
matricesQðxÞ and RðxÞ depend on space [16,58]] and for a
theory of multiple fields ψαðxÞ [18,59–64]), as we will
discuss in future work.
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