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We demonstrate the continuous translational invariance of the energy of a capillary surface in contact with
reconfigurable solid boundaries. We present a theoretical approach to find the energy-invariant equilibria of
spherical capillary surfaces in contact with solid boundaries of arbitrary shape and examine the implications
of dynamic frictional forces upon a reconfiguration of the boundaries. Experimentally, we realize our ideas
by manipulating the position of a droplet in a wedge geometry using lubricant-impregnated solid surfaces,
which eliminate the contact-angle hysteresis and provide a test bed for quantifying dissipative losses out
of equilibrium. Our experiments show that dissipative energy losses for an otherwise energy-invariant
reconfiguration are relatively small, provided that the actuation time scale is longer than the typical relaxation
time scale of the capillary surface. We discuss the wider applicability of our ideas as a pathway for liquid
manipulation at no potential energy cost in low-pinning, low-friction situations.
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Introduction.—Capillary surfaces, which are infinitely
thin surfaces that separate two fluids, are an everyday
example of how beautiful symmetrical shapes appear in
nature. Because they store surface energy, capillary surfa-
ces underpin important physical phenomena such as the
extreme superhydrophobicity exhibited by many plant and
animal species, the internal adhesion of granular media, and
the stability of foams and emulsions [1].
The fundamental equilibrium principle of the modern

theory of capillarity is the minimization of the total surface
energy [2], which for a solid-liquid-gas system reads
F ¼ γlgAlg þ γslAsl þ γsgAsg, where γi and Ai refer to the
surface energy and surface area of the liquid-gas (i ¼ lg),
solid-liquid (i ¼ sl), and solid-gas (i ¼ sg) interfaces.
As first noted by Gauss, the minimization of F is a

variational problem that yields two central equations for the
shape of a capillary surface. First, the liquid-gas interface
must satisfy the Young-Laplace equation,

Δp ¼ 2γlgκ; ð1Þ
which relates the pressure difference between the liquid and
the gas Δp to the Laplace pressure 2γlgκ, where κ is the
mean local curvature of the interface. Second, upon contact
with a solid boundary, the interface profile must satisfy
Young’s law,

cos θe ¼
γsg − γsl

γlg
; ð2Þ

which determines the intersection angle with the solid θe,
also known as the equilibrium contact angle.
Finding solutions of the Young-Laplace equation, sub-

ject to the boundary condition imposed by Young’s law,
is a paradigm in capillarity [3,4]. Once an equilibrium
solution is found, its stability can be examined and the
surrounding energy landscape constructed. A displacement

from equilibrium can be static or dynamic, but, in most
cases, will lead to a change in the surface energy. Motion
can occur only if this change surpasses the static energy
barrier of contact-angle hysteresis [5], and the time scale
of the motion that follows is typically set by competing
capillary, dissipative, and external forces [6].
The relation between symmetry and energy invariance is

a central concept across physics. In general, an equilibrium
state with a high degree of symmetry will have a large
number of energy-degenerate configurations mapping onto
that state. For capillary surfaces, this implies the existence
of energy landscapes where energy-invariant equilibria are
either continuously or discreetly distributed in the param-
eter space (a familiar example is the translational symmetry
of a droplet on a flat solid surface).
It is natural to consider whether the intrinsic symmetries

of a capillary surface can ensure the invariance of the
surface energy upon a reconfiguration of the boundaries. If
so, one can further ask if energy-invariant trajectories that
achieve a net translational motion of the capillary surface
can be devised. This is an interesting problem from the
point of view of theory, and is experimentally challenging
because of the barriers imposed by contact-angle hysteresis
and dynamic frictional forces.
In this Letter we demonstrate the energy-invariant transla-

tional motion of a capillary surface upon actuation of
bounding solid surfaces. We focus on spherical surfaces as
a model system, which appear in numerous situations of
fundamental and practical relevance. We first introduce a
theoretical approach to find paths of energy-invariant equi-
libria, and then examine the implications of dynamic frictional
forces using a Lagrangian approach. Experimentally, we
exemplify our ideas by manipulating the position of a droplet
in a wedge geometry using slippery liquid-infused porous
surfaces (SLIPS) [7], also known as lubricant-impregnated
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surfaces [8], which eliminate the contact-angle hysteresis and
provide a test bed for quantifying dissipative losses out of
equilibrium. We discuss the wider applicability of our results
as a pathway for liquid manipulation at no surface-energy cost
in low-pinning, low-friction situations.
Theory.—We start by considering the simplest solution

of the Young-Laplace equation for a solid-liquid-gas
system that preserves a spherical symmetry. This corre-
sponds to an aerosol droplet of volume Vs and surface area
As [see Fig. 1]. One can map this geometry to a sessile
droplet by considering the intersection of the sphere with a
solid plane of total surface area A. The required droplet
shape is enforced by choosing the level of the truncation,
which determines the intersection angle with the solid plane
θe. This fixes the excluded volume of the sphere Vx and the
volume of the droplet, V ¼ Vs − Vx. As a result, one finds
the total surface energy, Fe ¼ γlgAs − Fx, where Fx ¼
γlgAs½ð1þ cos θeÞ=2þ sin2 θe cos θe=4� − γsgA is the free
energy of the excluded cap, the solid-liquid footprint, and
the dry portion of the solid plane.
This construction can begeneralized to include an arbitrary

number of nonintersecting boundaries, and of any shape.
Mechanical equilibrium is guaranteed because the truncated-
sphere shape satisfies the Young-Laplace equation, while the
intersection with the solid boundaries now requires that
Young’s law is satisfied locally along each contact line.
With these considerations in mind, one can immediately find
the static surface energy of the capillary surface,

Fe ¼ γlgAs −
X

Fxi; ð3Þ
where the first term is the contribution of the full sphere and
the second term is the energy arising from the portions
excluded by the solid boundaries.
Here we shall focus on the situation where the solid

surfaces have uniform wettability [9]. In such a case, the
requirement of a constant equilibrium contact angle over
a solid surface imposes the constraint that, close to the
contact line, the boundaries are solids of revolution about
an axis passing through the center of the sphere. It is
straightforward to apply this criterion to find the force-free
equilibrium states of capillary bridges between flat and
curved walls [10–15], and also those of droplets in contact
with suspended solid particles, such as Pickering emulsions
[16] and liquid marbles [17,18].
The surface energy of such truncated-sphere solutions is

invariant upon a rotation of the solid boundaries about the
center of the sphere [see Fig. 1]. If one denotes Xe the

equilibrium position of the center of the sphere relative to a
reference frame fixed to the solid boundaries (e.g., their
center of mass), then such a rotation is equivalent to a
displacement of Xe relative to that reference frame. Because
the surface energy does not depend on the position of the
capillary surface relative to the frame of reference of the
boundaries (i.e.,Fe is not a function ofXe), a reconfiguration
of the boundaries can result in a net translation of the
capillary surface without the system incurring any work.
While this assertion is true in the quasistatic limit, more

careful consideration is needed to quantify the out-of-
equilibrium contribution to energy dissipation arising from
the motion of the boundaries. Consider the Lagrangian of the
capillary surface in the overdamped limit, LðX; tÞ ¼ −U,
whereU ¼ FðXÞ is the potential energy andX is a coordinate
describing its position relative to a set of solid boundaries. For
a nonconservative system [19], the principle of minimization
of action leads to the classical Euler-Lagrange equation

−
∂L
∂X þ ν _X ¼ 0; ð4Þ

where the second termon the left-hand side corresponds to the
friction force and ν is the corresponding friction coefficient.
Multiplying both sides of Eq. (4) by _X leads to an expression
for the rate of change of the total energy, dE=dt ¼
∂F=∂t − νð _XÞ2. Close to equilibrium, F ≈ Fe þ 1

2
kðXeÞ

ðX − XeÞ2, with a spring constant k that depends on the
equilibrium configuration (here encoded through Xe).
Therefore,

dE
dt

¼ ∂Fe

∂t þ 1

2

∂
∂t ½kðX − XeÞ2� − νð _XÞ2: ð5Þ

The first term in Eq. (5), ∂Fe=∂t ¼ 0, confirms the energy
invariance in quasistatic situations, where X ¼ Xe and
_X ¼ 0. The second and third terms give the contributions
to energydissipation due to small deviations fromequilibrium
and frictional forces, respectively.
To quantify these contributions, we consider a slow

sustained actuation of the boundaries over a time scale Δt,
which results in a change in the equilibrium position
ΔXe. Within our description, this consists of prescribing
an arbitrary function XeðtÞ in an interval 0 ≤ t ≤ Δt.
Expressing the second term in the right-hand side of
Eq. (5) using Eq. (4), and integrating, gives the total energy
consumption during the actuation,

ΔE¼
Z

Δt

0

dE
dt

dt

¼
Z

1

0

ΔX2
e

�
1

2

∂
∂T

��
τ

Δt

�
2

k_x2
�
−
�

τ

Δt

�
k_x2

�
dT; ð6Þ

where we have defined the intrinsic relaxation time scale
τ≡ ν=k and used the dimensionless variables T ≡ t=Δt
and x≡ X=ΔXe. The total energy consumption will vary
depending on the actuation and response signals, XeðtÞ
and XðtÞ, subject to the initial condition Xð0Þ. More
importantly, both terms contributing to the energy change

FIG. 1. Construction of energy-invariant equilibria of spherical
capillary surfaces.
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in Eq. (6) will be negligible whenever the actuation is slow
relative to the relaxation time scale, i.e., if τ=Δt ≪ 1.
Experiments.—Experimentally, a smooth transition

between the energy-invariant states of a capillary surface
upon boundary reconfiguration can only be achieved after
eliminating contact-angle hysteresis [14]. Furthermore,
to achieve the regime of negligible energy consumption
during the reconfiguration [see Eq. (6)], one needs a test
bed to determine the relaxation time scale of the out-of-
equilibrium motion of the fluid. In our experiments, we
used SLIPS [7], also known as lubricant-impregnated
surfaces [8], as a means of eliminating contact-angle
hysteresis. When placed on a SLIPS surface, a small water
droplet adopts a spherical shape with an apparent contact
angle, θ ¼ 100°� 5°. We also observed a wetting ridge
close to the intersection between the droplet and the SLIPS
surface, indicating the presence of a lubricant layer coating
the droplet and preventing direct contact between the
droplet and the underlying solid [8,20,21]. This was further
confirmed by measurements of the effective surface
tension of a water droplet coated with a thin lubricant
layer, γ ≈ 63 mNm−1, and of extremely low sliding angles
(< 1°) for the droplet when tilting the SLIPS surface [see
Supplemental Material for more details [22]].
To illustrate the formation of truncated-sphere droplet

shapes in contact with SLIPS surfaces, we created a wedge
of variable opening angle β by mounting two SLIPS on an
adjustable stage. For such a configuration, the free energy
of a droplet in contact with the boundaries, Eq. (3), reduces
to Fe ¼ γπðcos 3θ − 9 cos θÞR2

s=3þ const, with a sphere
radius Rs ¼ f6V=½πðcos 3θ − 9 cos θÞ�g1=3. The natural
frame of reference of the solid boundaries is the apex of
the wedge, from which the equilibrium position of the
center of the truncated spherical droplet along the bisector
line is given by Xe ¼ − cos θRs= sin β. In Fig. 2(a) we
present equilibrium droplet configurations where Xe is
varied by adjusting the angle of the wedge in the range
1.1° ≤ β ≤ 2.8°. Note that, because for small wedge angles

Xe ∼ 1=β, the droplet can be displaced several times its
own width along the bisector line upon a relatively small
reconfiguration of the boundaries. In Fig. 2(b) we present
measurements of the cube of the droplet radius Rs as a
function of the wedge angle. Because the apparent contact
angle can vary from one set of SLIPS surfaces to another by
a few degrees, we present our data absorbing the depend-
ence on the contact angle, confirming the invariance of the
truncated spherical shape upon changes in the orientation
of the boundaries. This is equivalent to comparing the
volume of the truncated sphere to the measured volume of
the droplet, as shown by averaging the data over the wedge
angle [see inset in Fig. 2(b)].
In Fig. 2(c) we present a sequence of droplet configu-

rations obtained by manually imposing an arbitrary signal
XeðtÞ [see also Video S1 in Supplemental Material [22]].
In the absence of a threshold pinning force to overcome,
a sudden change in the wedge geometry results in the
immediate motion of the droplet towards a new equilibrium
configuration. Therefore, the droplet’s trajectory follows
the imposed signal [Fig. 2(d)], with a lag determined by the
interplay between the actuation and relaxation time scales.
As a test bed to quantify the relaxation time of the

translational motion of the droplet τ, we carried out experi-
ments where one of the SLIPS surfaces is slowly brought
into contact with a droplet. Upon contact, the droplet is
allowed to relax to its equilibrium configuration [Fig. 3(a)].
In terms of our mathematical model, this corresponds to
setting Xð0Þ ¼ Xe þ ΔX, where Xe and ΔX are constants.
Therefore, from Eq. (4), we expect an exponential relaxation,
XðtÞ ¼ Xe þ ΔX expð−t=τÞ. Figure 3(a) shows a typical
experimental sequence of the relaxation process, where
Xð0Þ > Xe. The droplet moves inwards, and follows a
remarkably smooth dynamics [Fig. 3(b)]. Fixing the initial
position of the droplet within the wedge to either Xð0Þ < Xe
or Xð0Þ > Xe, respectively, leads to outwards and inwards
motions, always resulting in the same stable equilibrium
state [Fig. 3(c)].

(b) (c) (d)(a)

FIG. 2. Shape invariance of droplets trapped in SLIPS wedges. (a) A 4-μL water droplet equilibrates at different positions within a
SLIPS wedge by adjusting the opening angle β. (b) The radius of the droplet (normalized to eliminate variations in the apparent contact
angle, θ ¼ 100� 5°) is invariant upon changes in the opening angle of the wedge. The inset shows the dispensed and measured droplet
volumes. Error bars correspond to the standard deviation of the sample. The scale bar is 1 mm. (c) Manual actuation of a droplet by
reconfiguration of the SLIPS geometry. The actuation signal shifts the position of the apex of the wedge (filled triangle). The new
prescribed equilibrium position (open circle) is followed by the center of the droplet (times). (d) Equilibrium position and droplet
trajectory for the sequence shown in (c). The droplet trajectory, here tracked by measuring the position of the center of the osculating
sphere in the frame of reference of the lab XL, follows the imposed signal with a lag determined by the friction force acting on the liquid.
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Because the SLIPS surfaces eliminate contact line
friction [7,8], the friction force −ν _X results from the flow
within the droplet, the lubricant layer, and the wetting ridge.
This situation is similar to the case of a wetting capillary
bridge moving within a solid wedge [23]. The contribution
of the lubricant layer, relative to the bulk of the droplet,
scales as h=H ≈ 10−2, where h ≈ 10 μm is the thickness of
the lubricant layer [21] and H ≈ 1 mm is the typical
thickness of the droplet, and is therefore negligible. We
expect that the contribution from the ridge is also negli-
gible, as the apparent angle is always close to its static value
during the relaxation of the droplet. Therefore, we assume
that the dominant contribution to the friction force comes
from the flow pattern within the droplet. To gain insight
into the structure of the flow, we carried out lattice
Boltzmann simulations [24] of 2D droplets equilibrating
in wedge geometries [see Supplemental Material for details
[22]]. The simulations reveal a pressure-driven flow within
the droplet, similar to a Jeffery-Hamel flow [25], truncated
at the leading and trailing menisci, which move at uniform
speed [Fig. 3(d)]. This effect can be captured by consid-
ering a slip length l, which quantifies the lubrication
imparted by the SLIPS surface on the motion of the
apparent contact lines. After some manipulations, the
expected friction coefficient can be expressed as
ν ≈ 12 μV=ð1þ 6ϵÞH2, which is the familiar result for a
Poiseuille flow with a correction that depends on the slip
effect, where ϵ ¼ l=H [see Supplemental Material [22]].
To compare the theoretical prediction to the measured

relaxation times, we use a model for the out-of-equilibrium
droplet morphology assuming a quasispherical barrel shape
intersecting the solid at the apparent contact angle θ [26].
The droplet shape can then be used to construct the

energy landscape FðXÞ, which in turn fixes the spring
constant k. To leading order in β and θ − π=2 (corresponding
to the regime of our experiments), we obtain k ≈
3πγβ2=ðθ − π=2Þ [see Supplemental Material [22]]. Using
the geometrical relation H ≈ ð4V=πÞ1=3ðθ − π=2Þ2=3, we
then find a prediction for the relaxation time τ ¼ ν=k≈
½μ=γð1þ 6ϵÞβ2�½4V=πðθ − π=2Þ�1=3. Figure 3(e) confirms
the scaling of τ with V, θ, and β. Using the measured surface
tension of the lubricant-cloaked droplets, γ ¼ 63 mNm−1,
and the reported value of the viscosity of water at room
temperature, μ ¼ 1 mPa s, the only unknown parameter
in our prediction is the slip-length to drop-height ratio ϵ.
We find a best fit to the data by choosing ϵ ≈ 0.2, which
corresponds to a ≈60% drag reduction relative to the
reference Jeffery-Hamel flow.
Our measurements of the relaxation time allow us to

calculate the friction coefficient, and, therefore, to estimate
the typical friction force experienced by the droplets upon
actuation. For the actuation sequence shown in Fig. 2(d),
ν ≈ 0.013 mNsmm−1, and the droplets move with veloc-
ities ranging from −0.4 to 1.2 mms−1. Therefore, the
friction force varies within −0.005–0.015 mN, and is
significantly smaller than the weight of a droplet of equal
size (≈ 0.04 mN). This implies that a relatively weak driving
is enough to achieve translational motion, even out of
equilibrium. This is evidenced in Fig. 4, where we present
the corresponding reconstructed energy change, Eq. (6).
After the droplet has equilibrated, the total energy E is
always reduced due to the dissipation term, −ν

R
dt _X2.

However, the energy only changes significantly when the
actuation time scale is much faster than the relaxation time
scale of the drop. These “fast” events appear as intermediate

FIG. 3. Test bed for measuring the translational motion friction coefficient on SLIPS surfaces. (a) Time-lapse sequence of a 3-μL
droplet moving inwards in a SLIPS wedge of opening angle β ¼ 2.8°. (b) Time dependence of the position of the droplet, tracked by
measuring the average distance of the leading and trailing menisci relative to the apex of the wedge XðtÞ. The time evolution obeys an
exponential decay (continuous line) with a relaxation time scale τ (inset). (c) Inwards and outwards equilibration of droplets of the same
volume (V ¼ 18 μL) in wedges of the same angle, β ¼ 2.0°. The direction of motion is indicated by the arrow. In equilibrium (bottom
panels), both droplets select the same configuration. (d) Flow pattern of an inwards moving droplet (lattice Boltzmann simulation). The
arrows indicate the velocity field in the frame of reference of the center of the droplet. The gray scale indicates the local speed.
(e) Scaling of the relaxation time of the droplet with droplet volume, apparent contact angle, and wedge angle. The solid line is the
expected scaling predicted by the theory (see text). The scale bars are 2 mm.
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peaks in the potential energy, where the system is driven out
of equilibrium, and correspond to the segments 2–3 and 4–5
in Fig. 2(d). During the rest of the actuation, where the
driving is relatively slow, the change in potential energy and
the energy dissipation remain negligible [plateaus in Fig. 4],
confirming that it is possible to approach the limit of an
energy-invariant translation of the droplet upon a slow
reconfiguration of the boundaries.
Our results thus open up the possibility of developing

pathways for droplet actuation at no potential energy cost and
involving low energy dissipation. We highlight the relevance
of these ideas in the future development of contact-free
microfluidic channels that overcome both contact-line pin-
ning and reduce viscous friction using liquid-layer mediated
slip. These principles can be extended to treat multiphase
systems such as encapsulated droplets, solid particles, and
even cells, and can have awider relevance in tribology [27,28]
to encourage the development of technologies that remove the
minimum force necessary to create motion and achieve the
accurate manipulation of target objects.
Here we have focused on capillary surfaces of spherical

symmetry and in contact with solids of uniform wettability
as a means to illustrate energy invariance upon boundary
reconfiguration. These ideas, however, can also be applied
to study capillary surfaces of a different symmetry and in
contact with boundaries of prescribed wettability distribu-
tions, opening the possibility of designing target energy
landscapes for liquids in contact with solids as the basis for
new kinds of “capillary metamaterials”.
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