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Densely packed semiflexible polymers with contour length L confined in spheres with radius R of the
same order as L cannot exhibit uniform nematic order. Depending on the chain stiffness (which we vary
over a wide range), highly distorted structures form with topological defects on the sphere surface. These
structures are completely different from previously observed ones of very long chains winding around the
inner surface of spheres and from nematic droplets. At high densities, a thin shell of polymers close to the
sphere surface exhibits a tennis ball texture due to the confinement-induced gradual bending of polymer
bonds. In contrast, when the contour length of the chains is significantly smaller than the radius of the
confining sphere, a few bent smectic layers form in the sphere. Molecular dynamics simulations
demonstrate these complex structures, and suitable order parameters characterizing them are proposed.
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Semiflexible biopolymers such as double-stranded (ds)
DNA, actin, microtubules, etc. play a crucial role for
structure and function of living matter, and confinement
caused by cell membranes is a central aspect in this context
[1–3]. For instance, ds DNA packaging in bacteriophage
capsids [4–6], storage of chromatin in the cell nucleus, and
self-organization of actin filaments in cell-sized confine-
ment [7] are problems motivating appropriate theoretical
modeling [8–17]. The majority of previous work focused
on the structure formed by a single long macromolecule
inside a sphere (in particular, how it is wrapped around the
interior surface). However, it is clear that in many contexts
high packing densities of anisotropic building blocks are
advantageous [11,18]. Such dense packing can be more
easily achieved when one confines many semiflexible
polymers of intermediate length rather than a single
extremely long chain molecule. This problem is also
relevant for applications where capsules carry “cargo”,
with the intention to use triggers to release the enclosed
content to achieve the desired action [19], e.g., drug
delivery [20]. Some experiments with DNA (or DNA-actin
filament mixtures) confined in spherical vesicles [21,22]
indeed indicate interesting phase behavior of such systems.
We also note analogies as well as differences to the dense
packing of stiff short rods inside of spheres [23,24] or in
spherical shells [25,26]. It is known that nematic order [27]
then is “frustrated” [28] due to topological defects [29–32],
and textured smectic shells occur [25,26]. In order to
elucidate the complex behavior of semiflexible chains in
spherical confinement, we conducted extensive computer
simulations.
Since for most cases of interest the sphere radii are

of mesoscopic size (0.1–10 μm), atomistically realistic

modeling of semiflexible polymers confined in these
spheres is not computationally feasible, and we use instead
a coarse-grained bead-spring model [33]. Good solvent
conditions are assumed, but the solvent is only implicitly
considered via an effective purely repulsive potential UðrÞ
acting between beads at distance r, i.e.,UðrÞ¼4ε½ðσ=rÞ12−
ðσ=rÞ6þ1=4�, r< rc ¼ 21=6σ, and Uðr > rcÞ ¼ 0. Here,
σ ¼ 1 and ε ¼ 1 are the units of length and energy,
respectively, and will be used in what follows.
Neighboring beads along a chain are bonded via an
anharmonic spring potential, Uspring ¼ −ðkr20=2Þ ln ½1−
ðr=r0Þ2�, r < r0, r0 ¼ 1.5σ, k ¼ 30ε=σ2. While this model
is standard for molecular dynamics (MD) simulations of
flexible polymers [40], we also employ a bending potential
UbendðΘijkÞ, where Θijk is the angle between two succes-
sive bonds connecting monomers at positions ri, rj and rk
(j ¼ iþ 1, k ¼ iþ 2)

UbendðΘijkÞ ¼ κ½1 − cosðΘijkÞ�; ð1Þ
and κ controls its strength. Using kBT ¼ 1, the length of the
bonds is lb ≈ 0.97, the contour length is L ¼ ðN − 1Þlb for
a chain with N beads, and the persistence length is
lp ≈ κlb. We focus here on rather stiff chains of inter-
mediate length (N ¼ 32) confined in spheres with radii
comparable to lp and L, such as R ¼ 35. Further, we
concentrate on high packing densities 0.2 < ρ < 0.7
[ρ ¼ 3N σ3=ð4πR3Þ, with total number of beads in the
system N ]. Surface effects on such confined chains at low
densities resemble the behavior at planar repulsive walls,
see, e.g., Ref. [41], and will be analyzed elsewhere [42].
The confinement by the (rigid) sphere is described by

the same potential as used for the bead-bead repulsion.
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This polymer model has been extensively studied in the
bulk [43,44] and the isotropic-nematic transition charac-
terized (it occurs for ρ ≈ 0.28 when N ¼ κ ¼ 32). Using
standard MD methods [43,44] on graphics processing units
with the HOOMD-blue code [45–47], we find that the bulk
region of the system develops a nematic order from about
ρ ≈ 0.27. At the same time, the surface region of the sphere
exhibits bipolar and so-called [12,30,31] tennis ball struc-
tures (see Fig. 1).
A rough orientation how these phenomena depend on κ

and ρ is derived from a study of the tensor that describes the
nematic order in the system,

Qαβ
ni ¼

1

2
h3uα

niu
β
ni − δαβi; ð2Þ

uni being the unit bond vector between monomer i and
iþ 1 for the nth chain, and α, β denoting Cartesian
components. Figure 2 shows the three eigenvalues λ3 >
λ2 > λ1 of the tensor Q̄αβ, where the bar indicates that
Eq. (2) is averaged over all bonds in the system. These
eigenvalues are zero in fully isotropic solutions, indeed
seen for rather flexible chains (κ < 8), consistent with the
bulk behavior of the studied model [43,44]. For 8 ≤ κ ≤ 20,
the chains still can take strongly bent configurations,
resulting in a complex partial order. In this stiffness regime,
the (local) nematic order is higher in the surface region of
the sphere than in its inner part. For κ ≥ 32, however, each
chain behaves like a flexible rod, and the (dense) system
exhibits considerable order, but it is not similar to the
nematic order in the bulk, where λ3 > 0.5 and λ2 ≈ 0
[41,43,44]. Note that for large κ and large ρ, the surface
region exhibits a much smaller eigenvalue λ3 than in the
bulk (Fig. 2).
Equilibration of such dense and strongly confined

systems as shown in Fig. 2 is notoriously difficult; for
the data shown, we started with κ ¼ 96 and reduced κ
gradually. However, using the inverse process, some

hysteresis (near κ ¼ 24) was found [49]. Such out of
equilibrium phenomena may similarly be a problem for
real systems.
Radial profiles of the center-of-mass (c.m.) density

ρc:m:ðrÞ and the chain end monomer density ρEðrÞ, as well
as the tangential and radial components of the mean square
end-to-end vector, R2

etðrÞ and R2
erðrÞ, respectively, yield

insight into the structural rearrangement of the chains in the
sphere with increasing density (Fig. 3). Here, ρc:m. is almost
constant throughout the sphere for ρ < 0.3, decreasing only
for r close to R. For ρ > 0.3, both a weak maximum at
r ¼ 0 and another peak near r ¼ 32 develops, indicating
that part of the chains gets attached to the sphere surfaces.
This layer of surface-attached chains also shows up in the
pronounced layering of ρEðrÞ. While R2

etðrÞ ≈ R2
erðrÞ ≈

L2=3 as long as r < 12, R2
erðrÞ → 0 for r → R, and then

R2
etðrÞ is almost L2=2, since then the end-to-end distance

has only two tangential components (due to the uniform
curvature of wall-attached chains these components are
somewhat smaller than L2=2). More interesting is the peak
that ρc:m:ðrÞ and R2

erðrÞ develop for r ≈ L=2 at high
densities (see Fig. 3). This means that chains preferentially
gather with their c.m. at a radial distance r ≈ L=2, and have
on average a large projection of their end-to-end distance

FIG. 1. (a) Snapshot of a system with N ¼ 32, κ ¼ 96 and ρ ¼
0.4 showing bipolar nematic order in a spherical cavity with
radius R ¼ 35. (b) Tennis ball order at N ¼ 32, κ ¼ 32, and
ρ ¼ 0.7. Because of the high density of the beads, only chains in
the vicinity of the sphere surface are visible. Snapshots rendered
using Visual Molecular Dynamics 1.9.2 [48].
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FIG. 2. Eigenvalues λ3 > λ2 > λ1 of the average nematic order
parameter of the bonds plotted vs κ at fixed monomer density
ρ ¼ 0.7 (a) and vs ρ at fixed κ ¼ 32 (b). Solid lines represent
data computed for all bonds in the system, whereas dashed and
dotted lines correspond to λ3 of bonds with r > 0.85R (surface
shell) and r < 0.85R, respectively. N ¼ 32 and R ¼ 35 here
throughout.
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on the radius vector. This behavior appears only for
ρ > 0.5, and then exhibits also a pronounced peak at small
r [49].
This structural transition can be explained by an accu-

mulation of chain ends in a particular equatorial plane of
the cavity. Whenever such a plane exists, the location and
orientation of it can be identified through the eigenvalues
(Λ3 > Λ2 > Λ1) and corresponding eigenvectors of the
gyration tensor of all the chain ends (with r < 0.5R, to
safely exclude those located in the surface shell). The large
asphericity αΛ ¼Λ3− ðΛ2þΛ1Þ=2> 60 for 0.5 ≤ ρ ≤ 0.7
indicates an accumulation of chain ends in a plane [49], the
normal vector n belonging to the smallest eigenvalue Λ1.
This structure is visualized in Figs. 4(a)–(d). An interesting
aspect is the whirl-like arrangement of the chains on the
surface, strongly correlated with the appearance of an
equatorial (xy) plane.
Figure 4 implies that bonds are aligned almost

perpendicular to the equatorial (xy) plane when their
distance z from this plane is small, but the chains are

increasingly twisted as they approach the sphere surface. To
quantify this effect, we define the order parameter S [12],

SðrÞ ¼ 1

M

XM
i¼1

cosð2ϑiÞ; ð3Þ

ϑi being the angle that a bond uni makes with respect to a
“latitude circle” around the z axis in a concentric spherical
shell ½r; rþ δr�, and M being the number of bonds in the
shell. S ¼ −1means that bonds are parallel to the z axis and
S ¼ þ1 means they are parallel to the “latitude circle.”
Figure 5(a) shows that SðrÞ is negative for most densities,
whereas positive SðrÞ only occurs for ρ ≥ 0.67 near the
sphere surface. Further, SðrÞ is almost −1 for small r, while
for 0.5 < ρ < 0.7 only Sðr < 10Þ ≈ −0.7 is reached. In all
cases, we find a very gradual and systematic change of SðrÞ
with r throughout the sphere.
Finally, we introduce an order parameter suitable to

distinguish between the bipolar and tennis ball character of
defects in the surface layer. We define a tensor
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FIG. 3. (a) Radial profile of the center-of-mass density ρc:m:ðrÞ
of semiflexible polymers with N ¼ κ ¼ 32 in a sphere of radius
R ¼ 35, for various densities ρ. Decreasing density from top to
bottom at r ¼ 17.5. Inset shows the end monomer density ρEðrÞ
close to the wall. (b) Mean square radial [R2

erðrÞ, solid] and
tangential [R2

etðrÞ, dashed] components of the end-to-end distance
for chains with center of mass at a distance r from the sphere
center for various ρ.

FIG. 4. (a) Slice perpendicular to the equatorial plane. Different
chains are shown with different colors simply to allow an easier
identification. Each chain that has one end close to the equatorial
plane has the other one close to the sphere surface, which requires
a considerable splay deformation of the nematic order. (b) Snap-
shot picture showing chain ends only (ends defining the equa-
torial plane are shown in blue, the others in red). The “disk”
formed by the blue points has a radius of about 32.4, and the
eigenvalues of the associate gyration tensor are Λ3 ¼ Λ2 ¼
262� 3, Λ1 ¼ 2.6� 0.1. (c) Same as (a) but plotting the radial
component of the director field in the zy plane perpendicular to
the equatorial plane. The color gradient indicates the degree of
bond-vector orientation along this field (red: full; blue: zero).
(d) View on one of the hemispheres from the center of the sphere
to one of the poles. All data for N ¼ 32, κ ¼ 96, and ρ ¼ 0.7.
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Ω ¼ 1

M − 1

XM−1

i¼1

�
ui × uiþ1

jui × uiþ1j
�

⊗
�
ui × uiþ1

jui × uiþ1j
�
; ð4Þ

for all bonds which lie between 0.85R < r < R. Each unit
vector defined by the parentheses in Eq. (4) defines a plane,
in which two subsequent bonds lie [12]. Averaging the
tensor components of Ω over all bonds and diagonalizing,
the eigenvalues and eigenvectors for the entire system are
obtained. In the disordered case, we found Ω3 ≈ Ω2 ≈Ω1

for the three eigenvalues of Ω. For the bipolar case, we
found Ω3 > Ω2 > Ω1, where the eigenvector npol belong-
ing to the smallest eigenvalue, Ω1, provides a good
description for the location of the poles. For the quad-
rupolar tennis ball configuration, we found Ω3 ≈Ω2 > Ω1.
The transition between these three states can also be
identified via the asymmetry αΩ ¼ Ω3 − ðΩ2 þΩ1Þ=2.
Figure 5(b) presents Ω and αΩ for a system with ρ ¼
0.7 at various κ, clearly showing the disordered-bipolar and
bipolar-tennis ball transitions at κ ¼ 8 and κ ¼ 24, respec-
tively. The analogous analysis at fixed κ ¼ 32 for varying
density is more challenging, as the polymer density in the
surface region becomes rather low at small ρ [cf. inset of
Fig. 3(a)]. Nevertheless, we were able to identify a distinct
tennis ball structure for ρ ≥ 0.4. Interestingly, the bulk
region beneath the surface exhibits a bipolar nematic order,

which gradually twists into the tennis ball texture as the
confinement is approached.
In conclusion, the competition between nematic order

and confinement of (rather stiff) semiflexible polymers of
contour length L in a sphere of radius R comparable to L
at rather large densities leads to complicated nonuniform
structures. At intermediate densities, the ordering is of
nematic type with bipolar defects, and although a signifi-
cant fraction of the chains occurs in a dense surface-
attached layer, near-surface order is still controlled by the
order in the sphere interior. At somewhat higher densities,
the character of the bulk order changes, and an equatorial
plane appears with chains having one chain end close to
this plane, the other close to the sphere surface. This
structure can be viewed as a caricature of smectic order
inside the sphere; in fact, when we choose L considerably
smaller than R, see Fig. 6, then we find that several
parallel planes where chain ends accumulate appear,
confirming this interpretation. In this case, the average
nematic director still coincides with the z axis normal to
the equatorial planes, and the surface order is compatible
with the bulk. For the largest densities accessible in
our work, the surface layer ordering develops features
differing from the interior, showing tennis ball-like
textures, so far seen only when single, very long semi-
flexible polymers are confined to the surface of spheres.
Understanding all these unconventional ordered structures
should be helpful for suitable applications of such
strongly confined polymeric systems, and could give
insight into related phenomena in biological systems. In
addition, the “patchiness” provided by the topological
defects on the sphere surface can have important impli-
cations in the use of anisotropic nanoparticles as building
blocks for colloidal self-assembly [18].

We are grateful to the German Research Foundation
(DFG) for partial support under Grants No. NI 1487/2–1
(A. N.) and No. BI 314/24–1 (A. M.). Further, D. A. V.
acknowledges support from the National Scientific and

0.2

0.3

0.4

0.5

0 16 32 48 64 80 96
0.00

0.05

0.10

0.15

0.20

Ω α Ω
κ

(b) Ω3
Ω2
Ω1
αΩ

FIG. 5. (a) SðrÞ plotted vs r for the case κ ¼ 32 at various
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r ¼ 5. Schematics adapted from Ref. [50]. (b) Eigenvalues of the
tensor Ω (left axis) and its asymmetry α (right axis) for various κ
at fixed ρ ¼ 0.7. N ¼ 32 and R ¼ 35 here throughout.

FIG. 6. (a) Snapshot of chain ends for the case of short chains
with N ¼ 16, κ ¼ 48, ρ ¼ 0.7, and T ¼ 0.6. Three distinct layers
of ends are visible. (b) Snapshot of chains with r < 0.85R at
the same state point, demonstrating the smectic order in the inner
part of the sphere. Snapshots in (a) and (b) are drawn at the
same scale.
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