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The transformation of the free-energy landscape from smooth to hierarchical is one of the richest features
of mean-field disordered systems. A well-studied example is the de Almeida–Thouless transition for spin
glasses in a magnetic field, and a similar phenomenon—the Gardner transition—has recently been
predicted for structural glasses. The existence of these replica-symmetry-breaking phase transitions has,
however, long been questioned below their upper critical dimension, du ¼ 6. Here, we obtain evidence for
the existence of these transitions in d < du using a two-loop calculation. Because the critical fixed point is
found in the strong-coupling regime, we corroborate the result by resumming the perturbative series with
inputs from a three-loop calculation and an analysis of its large-order behavior. Our study offers a
resolution of the long-lasting controversy surrounding phase transitions in finite-dimensional disordered
systems.

DOI: 10.1103/PhysRevLett.118.215701

Introduction.—Spontaneous symmetry breaking can
dramatically change material properties. Breaking transla-
tional symmetry turns liquids into crystalline solids, break-
ing gauged phase symmetry gives rise to superconductivity,
and breaking non-Abelian gauged symmetry endows
elementary particles with mass. In a host of disordered
models, a symmetry of the most peculiar type can break.
Upon cooling, the mean-field free-energy of these systems
develops a finite complexity; the number of metastable
states grows exponentially with system size. The similitude
between copies (replicas) of the system then depends on
whether or not they belong to a same cluster of metastable
states. In particular, right at the transition point, each replica
of the system is on the brink of falling into one cluster or
another, resulting in critical fluctuations of the similarity
between uncoupled copies. Remarkably, such replica sym-
metry breaking (RSB) accounts for the emergence of
glassiness in mean-field models ranging from liquids to
optimization problems and neural networks [1]. Mean-field
criticality, however, bears the seed of its own destruction.
Below the upper critical dimension, du, violent critical
fluctuations challenge the very validity of the approxima-
tion within which they were conceived. The existence of a
continuous transition into an RSB phase in dimensions d <
du is thus not a foregone conclusion, and its fate in
disordered systems remains hotly debated [2].
An illustrious example of this dispute centers around

mean-field models of spins with quenched impurities in an
external magnetic field, known to exhibit a de Almeida–
Thouless (dAT) transition [3]. This transition accompanies
the emergence of continuous RSB with a hierarchically
rough landscape, which eventually becomes fractal in the
low-temperature limit [4]. Its upper critical dimension,
du ¼ 6 [5], however, is well above 3 and the existence of

the transition in real physical systems has long been
questioned [6–13]. Recent advances in the mean-field
description of structural glasses have unveiled a new facet
of this problem. Solid glasses are also predicted to undergo
a critical RSB transition—known as a Gardner transition—
upon cooling, compressing, or shearing [4,14,15]. A
growing body of evidence further relates the Gardner
transition to the anomalous behavior of amorphous solids
compared to their crystalline counterpart, and to a non-
trivial critical scaling upon approaching the jamming limit
[4,16–20]. The question of whether dAT and Gardner
transitions survive finite-dimensional fluctuations has thus
gained renewed impetus.
The impact of fluctuations on RSB transitions was first

examined using the perturbative renormalization group
(RG) approach that proved so successful for Ising and
other universality classes. A loop expansion of the field
theory appropriate for the dAT and Gardner universality
class, however, finds that the critical fixed point is absent to
lowest, one-loop order for d < du [21–23]. This has led
many to conclude that such transitions then either become
discontinuous or simply vanish. Yet the lack of dimensional
robustness is challenged by numerical evidence supporting
the existence of a critical dAT transition in d ¼ 4 [24,25]
and of a critical Gardner transition in d ¼ 3 [26,27]. An
alternate interpretation is that the critical fixed point resides
in the strong-coupling regime of the field theory for all d,
thus preventing a one-loop calculation from identifying it.
A precedent is the Caswell-Banks-Zaks (CBZ) fixed point
of the non-Abelian gauge theory for elementary particles in
3þ 1 space-time dimensions [29]. This fixed point is
missed at one-loop order but captured at two-loop order.
Although the CBZ fixed point generically lies in the strong-
coupling regime, which falls beyond the designed range of

PRL 118, 215701 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
26 MAY 2017

0031-9007=17=118(21)=215701(6) 215701-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.215701
https://doi.org/10.1103/PhysRevLett.118.215701
https://doi.org/10.1103/PhysRevLett.118.215701
https://doi.org/10.1103/PhysRevLett.118.215701


a perturbative calculation, its existence has been corrobo-
rated by adiabatically connecting it to a perturbative fixed
point [30], supported by lattice simulations even in the
strong-coupling regime [31], and established beyond rea-
sonable doubt in supersymmetric theories [32,33]. Two-
loop calculations may thus find fixed points that are missed
by one-loop analysis, but additional lines of evidence are
then needed to confirm the result.
In this Letter, we present field-theoretic calculations that

capture the physics of both dAT transitions in spin glasses
and Gardner transitions in structural glasses. Like for the
CBZ fixed point, our two-loop calculation identifies a
critical fixed point for d < du that is missed by the one-loop
RG flow. Resummation of the perturbative series at three-
loop order supplemented by an analysis of its large-order
behavior further supports the robustness of this critical
fixed point for the dAT–Gardner universality class.
Field-theory setup.—The finite-dimensional generaliza-

tion of the mean-field Edwards-Anderson order parameter
for glasses is the replicated overlap field, qabðxÞ. This field
characterizes the similarity at positions x between pairs of
distinct replicated configurations through an n-by-n sym-
metric matrix with a null diagonal; the zero replica limit,
n → 0, is taken at the end of the calculations in order to
properly average over disorder [34]. In general, field
fluctuations can be subdivided into longitudinal, anomalous,
and replicon modes [35,36]. At dATand Gardner transitions
only replicon modes become critical (massless); the other
two remain short-ranged (massive) and can thus be negle-
cted at long distances. We henceforth only focus on the
replicon field,ϕabðxÞ, defined by the condition

P
n
b¼1 ϕab ¼

0 for all a ¼ 1;…; n, thus leaving nðn − 3Þ=2 degrees of
freedom.
In order to investigate the putative critical point, we seek

infrared-stable fixed points of the RG flow within the
critical surface on which the replicon field remains mass-
less. Within this surface, the field theory is governed by the
bare action, S ¼ R

dxL, with [37]

L ¼ 1

2

Xn
a;b¼1

ð∇ϕabÞ2

−
1

3!

�
gIbare

Xn
a;b¼1

ϕ3
ab þ gIIbare

Xn
a;b;c¼1

ϕabϕbcϕca

�
; ð1Þ

which is the most generic cubic action for replicon modes
[22]. The effective description of the system then depends
on the energy scale, μ, probed. This dependence is encoded
in the RG flow of dimensionless couplings, gXðμÞ with
X ∈ fI; IIg, that are related to bare couplings, gXbare, in
Eq. (1) [34]. The flow is governed by βX ≡ μ∂gX=∂μ, and
stops at fixed points, where βIðgI⋆; gII⋆Þ ¼ βIIðgI⋆; gII⋆Þ ¼ 0.
Note that for all d a Gaussian fixed point with gI⋆ ¼ gII⋆ ¼ 0
exists, but it is stable only for d > du [21].
Two-loop RG.—Inspired by the CBZ fixed point, we

compute the β functions to two-loop order for the replica
field theory in Eq. (1), using the dimensional regularization
scheme [29,34,38–43]. As expected [21–23], no stable fixed
point can be found at one-loop order for d < 6 [Fig. 1(a)].
For d < d0 ≈ 5.41, however, the two-loop RG flow locates a
stable fixed point with a finite basin of attraction [Figs. 1(b)
and 1(c)]. A system lying within this basin eventually
approaches the fixed point upon rescaling and is thus critical.
By contrast, a system that remains outside the basin cannot
continuously transition into an RSB phase, and may instead
exhibit a discontinuous transition. Remarkably, the boun-
dary of the basin is closely approximated by the tree-level
condition for a critical transition into a RSB phase, i.e.,
1 < gII=gI < ∞ [44].
The eigenvalues, λ1 and λ2, of

2
4

∂βI
∂gI

∂βI
∂gII

∂βII
∂gI

∂βII
∂gII

3
5
������
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ð2Þ

FIG. 1. RG flows in the space of couplings for (a) the one-loop calculation in d < 6 and the two-loop calculation in (b) d ¼ 3, (c) d ¼ 5,
and (d) d ¼ 5.5. Arrows denote flow toward longer length scales; background shading denotes the intensity of the flow quantified by
ðβIÞ2 þ ðβIIÞ2, and normalized by ϵ−3 in (a). The Gaussian fixed point (red dot) is unstable for d < 6. In (b) and (c) a nontrivial fixed point
(blue dot) is stable and lies at strong couplings. Its basin of attraction is delineated by two thick lines: one precisely along gI ¼ 0 and the
other approximately along gI ≈ gII. Outside this basin, the flow runs toward infinity, which is often characteristic of discontinuous
transitions. Note that for d ¼ 5, the flow spirals into the nontrivial fixed point, while for d ¼ 5.5 both fixed points are unstable.
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give the stability exponents that control subleading cor-
rections from irrelevant deformations near the critical point.
Figure 2(a) indicates that these exponents acquire an
imaginary component for d > ds ≈ 4.84; hence, the RG
flow then spirals toward the fixed point [Fig. 1(c)]. As has
been observed in other disordered systems [45–47], such
complex exponents can emerge from the nonunitarity of the
replica field theory, and give rise to an oscillatory decay of
the appropriate correlation functions in the critical region.
Conformality gets lost with the change in the spiral
direction at d ¼ d0 and no stable fixed point can be found
for d ∈ ðd0; duÞ [Fig. 1(d)]. In the absence of additional
nontrivial fixed points with which to collide [48], this
scenario provides a natural mechanism for exchanging
dominance between the Gaussian and the genuinely non-
perturbative fixed points as one goes from d > du down to
physical dimensions.
We also compute the critical exponents, ν and η, that

govern the divergence of the correlation length and the
decay of two-point correlation functions at the critical
point, respectively [Fig. 2(b)]. The former is obtained from
the relevant deformation by the quadratic coupling that
drives the system away from the critical surface. Estimates
of ν and η agree qualitatively with the trend observed in
d ¼ 4 simulations [24]; η is negative and ν is larger than its
mean-field value, νMF ¼ 1

2
.

Resummation.—Because the critical couplings are of
order unity for all d < du [Fig. 2(c)], resummation is
needed to assess the existence of the fixed point.
(Without a careful resummation, even the d ≤ 3 Wilson-
Fisher fixed point for the Ising universality class disappears
[49].) A field-theoretic perturbative series is indeed generi-
cally not convergent but rather asymptotic. More precisely,
a formal series in terms of the coupling constant,

fðg2Þ ¼
X
k

fkg2k; ð3Þ

typically has coefficients that exhibit a factorial growth, i.e.,
fk ∼ k!ð−1=AÞk, with a large-order constant A given in
terms of the saddle-point action [50,51]. Although a
truncation to the first couple of terms may yield a good
approximation in the weak-coupling regime, the series
itself is not mathematically well defined.
Borel resummation is the most common scheme used to

give epistemological traction to a fixed point. The approach
starts from the observation that a Borel transform,
~fBðg2Þ≡P

kðfk=k!Þg2k, has a finite radius of convergence,
jAj. Using the identity k! ¼ R

∞
0 dte−ttk the original series

[Eq. (3)] can formally be expressed as fðg2Þ ¼R
∞
0 dte−t ~fBðtg2Þ. The analytic continuation of the Borel
transform onto the whole positive axis then unambiguously
defines the function f. There is typically no problem to this
analytic continuation when A > 0; hence, the series is then
deemed Borel summable.
In order to adapt the above scheme to a replica field

theory with two cubic couplings, we define ðgI; gIIÞ≡
gðcos θ; sin θÞ and regroup the double series, with the
power of g2 counting loop order:

fðgI; gIIÞ ¼
X∞

k1;k2¼0;k1þk2¼even

fk1;k2ðgIÞk1ðgIIÞk2

¼
X∞
k¼0

g2k
�X2k
k1¼0

fk1;2k−k1ðcos θÞk1ðsin θÞ2k−k1
�

≡X∞
k¼0

fkðθÞg2k: ð4Þ

FIG. 2. Critical parameters at the nontrivial fixed point derived within two-loop (solid lines) and three-loop with Borel resummation
(dashed lines) RG schemes as functions of the spatial dimension d. (a) Real parts of the stability exponents around the fixed point within the
critical surface, λ1 and λ2. (b) Critical exponents, ν (cyan) and η (navy blue). (c) Fixed-point values of running couplings, gI (red) and gII

(orange). At two-loop order, the nature of the fixed point changes at ds ≈ 4.84 and d0 ≈ 5.41. The two stability exponents merge at d ¼ ds,
at which point they acquire imaginary parts; hence, the flow spirals into the (stable) fixed point [Fig. 1(c)], while for d > d0 the real part of
these eigenvalues becomes negative and the flow spirals out of the (unstable) fixed point [Fig. 1(d)]. Upon inclusion of three-
loop contributions, Borel resummation indicates that the fixed point is robustly stable for d ≲ 5.05 but does not exhibit any
spiraling flow.
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The Borel-summability of the series is then governed
by the angle-dependent large-order behavior fkðθÞ∼
k!½−1=AðθÞ�k. Consequently, as has been observed for
the Abelian gauge theory with background fields [52],
Borel-summability depends on the ratio of two couplings,
as encoded in the saddle-point solution to the classical
equations of motion for replicons [53].
Among nontrivial saddles, we assume [55,56] that the

saddle of the form

ϕ⋆
abðx; θÞ ¼

1

g
FðxÞvðθÞab ð5Þ

dictates the value AðθÞ. Here, F is a spherically symmetric
function that solves

∇2F ¼ F − F2; ð6Þ

obtained numerically through the pseudospectral method

[57,58], and vðθÞab is the replicon component of the Parisi
RSB ansatz [1,59–61]. Computing the action of the
resulting saddle [34] indicates that a solution exists if
and only if 1 < tan θ < ∞, with

AðθÞ ¼ cd
cos2θðtan θ − 1Þ ; ð7Þ

where cd is a d-dependent positive constant. The series is
thus Borel summable within the wedge 1 < gII=gI < ∞,
consistent with the mean-field consideration [44] and the
two-loop basin of attraction obtained in Fig. 1. This result
thus validates our perturbative treatment of the strong-
coupling regime within the basin of attraction.
Given the large-order behavior at hand, we further

compute the critical properties of the fixed point by
resumming the three-loop series, analytically continuing
the Borel transform through the conformal mapping
[34,62]. Comparing the two-loop and the resummation
results upon inclusion of three-loop contributions [34]
(Fig. 2) confirms that the fixed point is robustly conserved
for d≲ 5.05. The critical exponents from the two schemes
further qualitatively agree with one another.
Conclusion.—The nontrivial critical fixed point identi-

fied here governs both dAT and Gardner transitions in
d < du. An RSB transition for the underlying universality
class is thus possible over a broader d range than previously
thought [67–69]. The RG flow diagrams (Fig. 1) and the
large-order behavior, however, make it clear that not all
microscopic models belong to the basin of the attraction of
the critical fixed point. This realization offers a possible
explanation for the absence of dAT criticality in the
Edwards-Anderson model in d ¼ 3. The model may simply
remain outside the basin of attraction, and thus be governed
either by a discontinuous transition into the RSB phase or
by the two-state droplet picture [6–10]. Enlarging the range

of disordered spin systems used for studying RSB criti-
cality would clarify this last point.
Our results further highlight various future research

directions. First, they guide efforts in systematizing non-
perturbative RG methods [70] and controlling conformal
bootstrap techniques for nonunitary theories [71–74]. Both
approaches should find the nontrivial critical fixed point
when applied to the replica field theory. Second, conflicting
results have been obtained for the lower critical dimension,
dl, from a heuristic interface argument [75] and from a
correlation-function argument [76]. The dimensional
dependence of the infrared divergence associated with soft
modes thus deserves further scrutiny. Third, extending the
current approach will enable the study of the RG trajectory
between the critical point identified here and the multi-
critical fixed point found perturbatively for the spin-glass
transition in the absence of an external magnetic field [5],
where longitudinal and anomalous modes become massless
concurrently with the replicons.
Data relevant to this work can be accessed by following

the link in Ref. [77].
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