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Superconducting quantum circuits are a promising candidate for building scalable quantum computers.
Here, we use a four-qubit superconducting quantum processor to solve a two-dimensional system of linear
equations based on a quantum algorithm proposed by Harrow, Hassidim, and Lloyd [Phys. Rev. Lett. 103,
150502 (2009)], which promises an exponential speedup over classical algorithms under certain
circumstances. We benchmark the solver with quantum inputs and outputs, and characterize it by
nontrace-preserving quantum process tomography, which yields a process fidelity of 0.837� 0.006. Our
results highlight the potential of superconducting quantum circuits for applications in solving large-scale
linear systems, a ubiquitous task in science and engineering.
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Linear systems lie at the heart of many areas of science
and engineering. To solve a system of linear equations with
N variables, the best known classical algorithm requires a
time of OðNÞ. Harrow, Hassidim, and Lloyd (HHL) [1]
showed that, in principle, quantum computers can solve
linear systems exponentially faster by calculating the
expectationvalue of an operator associatedwith the solution,
which may lead to many practical applications of quantum
computation other than those previously known [2–4]. For
an s-sparse system matrix of size N × N and condition
number κ, the HHL algorithm can reach a desired computa-
tional accuracy ϵwithin a running time ofO( logðNÞs2κ2=ϵ)
under certain circumstances [5], comparing to the best
known classical algorithm of O(Nsκ= logðϵÞ). Such an
exponential speedup promises widespread applications that
address large-scale systems. Indeed, several applications
based on the HHL algorithm, such as data processing [6],
numerical calculation [7], and artificial intelligence [8,9],
have been proposed in recent years.
A compiled version of the HHL algorithmwas previously

only demonstrated with parametric down-converted single
photons [10,11] and liquid nuclearmagnetic resonance [12],
both of which are considered not easily scalable to a large
number of qubits. For example, the optical demonstration
was limited by the probabilistic photon generation and two-
photon gate operation. For a deterministic andmore scalable
implementation, here, we turn to a solid-state system, i.e., a
superconducting quantum circuit in this experiment, which

has attracted significant attention due to a number of merits,
including themuch-improved coherence [13–15], the excel-
lent scalability [16–18], and the remarkable high fidelity and
fast control [19–21]. In addition, compiled versions of
various quantum algorithms, such as the Deutsch-Jozsa
algorithm [22,23], the Grover’s algorithm [22], and the
Shor’s algorithm [24], have been successfully tested on this
solid-state platform on a small scale.
In this Letter, we demonstrate a nontrivial instance of a

quantum linear solver, based on the HHL algorithm for a
2 × 2 system, with a superconducting circuit consisting of
four transmon qubits of the Xmon variety [25]. We test the
solver with 18 distinct quantum-state inputs that uniformly
distribute on the Bloch sphere, from which the nontrace-
preserving quantum process tomography (QPT) can be
reliably determined [26]. For various quantum inputs, our
quantum solver can return the desired solutions with
reasonably high precision, yielding an averaged QPT
fidelity of 0.837� 0.006. As such, our experiment repre-
sents the first demonstration of the quantum algorithm for
solving systems of linear equations on a solid-state platform.
The device was fabricated on a sapphire substrate in

three steps following the procedure outlined previously
[13]: (1) deposit the aluminum film on the degassed
substrate; (2) define circuit wirings using wet etch;
(3) double-angle evaporate the Al=AlOx=Al Josephson
junctions. Figure 1 shows the optical micrograph of the
device, with the four Xmon qubits labeled from Q1 to Q4.
Each qubit has its own frequency-control Z line for
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rotations of the qubit state around the Z axis on the Bloch
sphere. Q1 and Q2 (Q3 and Q4) share the microwave XY
line on the left (right) that is closer to Q1 (Q4) for single-
qubit rotations around X and Y axes. The microwave pulses
transmitted through each XY line have two-frequency
components, and the drive strength to Q1 (Q4) is more
than that to Q2 (Q3) by a factor of 11.7 (6.7) as
experimentally calibrated. Each qubit dispersively couples
to its own readout resonator, and all readout resonators
couple to a common transmission line, enabling simulta-
neous single-shot quantum nondemolition measurement on
multiple qubits using frequency-domain multiplexing. The
signal-to-noise ratio is further improved by a quantum-
limited parametric amplifier, similar to that described
previously [27].
The circuit Hamiltonian under the rotating wave approxi-

mation is

H¼−
X4
j¼1

ωjðtÞσzj=2þ
X3
j¼1

gj;jþ1ðσþj σ−jþ1þσ−j σ
þ
jþ1Þ; ð1Þ

where ωjðtÞ is the resonant frequency of the jth qubit
that can be tuned over time, σzj is the Pauli operator, σ�j
are the raising and lowering operators, and gj;jþ1 is the

nearest-neighbor coupling strength. The coupling strengths
of gj;jþ1=2π for j ¼ 1 to 3 are measured to be around 13.0,
9.8, and 14.1 MHz, respectively. These Xmon qubits
typically have a maximum frequency around 5.1 GHz
and an anharmonicity around 250 MHz. In this experiment,
qubit idle frequencies ωjðt ¼ 0Þ=2π for j ¼ 1 to 4 are
arranged in a zigzag pattern at 5.073, 4.074, 4.948, and
4.547 GHz, respectively, which ensures that the nearest-
neighbor and next-nearest-neighbor couplings along the
qubit chain are effectively turned off when idling. At the
above-listed frequencies, the qubit lifetimes T1s are mea-
sured to be around 15.9, 7.4, 7.8, and 14.1 μs, and the
Gaussian dephasing times [28] T�

2s are around 8.7, 2.3, 5.2,
and 3.4 μs, respectively (see [29] for more information on
the device).
The HHL algorithm aims to solve a system of linear

equations Ax⃗ ¼ b⃗ for x⃗, given the N × N Hermitian matrix
A and the input vector b⃗. The process involves three subsets
of qubits: a single ancilla qubit, a register of k qubits used to
store the eigenvalues of A to a binary precision of k bits,
and a memory ofO( logðNÞ) qubits used to load b⃗ and also
store the output x⃗. For simplicity, we assume that b⃗ is a unit
vector, whose entries fbig can be encoded in the memory
formatted to a quantum state jbi ¼P bijii, where jii
denotes the computational basis of the O( logðNÞ) qubits.
Next is the core of the HHL algorithm responsible for the
exponential speedup: with carefully designed quantum
logic gates, including mapping the Hermitian matrix A
to the system Hamiltonian, the quantum state jxi represent-
ing the desired solution x⃗ can be synthesized in the memory
conditional upon the state of the ancilla qubit. Afterward,
one can either map the quantum state jxi to recover all
entries of the vector x⃗, or, more efficiently, perform the
quantum measurement corresponding to an operatorM that
one is interested in to extract its expectation value hxjMjxi.
With the system initialized in the state j0iaj0irjbim,

where the subscripts a, r, and m index, respectively, the
subsets of qubits in the ancilla, the register, and the memory
(here and below, we keep the subscripts in wave functions
only when the states of two or three subsets are quoted
simultaneously), a general description of the HHL core is as
follows: (1) with quantum phase estimation [1,32], using
the controlled unitary transformations in the form e−iAt for
a variable time t, decompose jbi in the eigenbasis of A, i.e.,
jbi ¼Pjβjjuji, and map the corresponding eigenvalues λj
into the register in a binary form to transform the system toP

jβjj0iajλjirjujim; (2) perform controlled rotation Rðλ−1Þ
on the ancilla, according to λj stored in the register, which
transforms the system to

X
j

βj

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

C2

λ2j

s
j0ia þ

C
λj
j1ia

!
jλjirjujim; ð2Þ

(a)

(b)

FIG. 1. (a) False color photomicrograph and (b) simplified
circuit schematic of the superconducting quantum circuit for
solving 2 × 2 linear equations. Shown are the four Xmon qubits,
marked from Q1 to Q4, and their corresponding readout reso-
nators, marked from R1 to R4.
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where C (≤ 1) is a constant that can be selected as any real
number to make the controlled rotation physical [1];
(3) reverse the procedure in (1) to disentangle and clear
the register, and the system state evolves to

X
j

βj

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

C2

λ2j

s
j0ia þ

C
λj
j1ia

1
Aj0irjujim: ð3Þ

A postselection of the j1i-state outcome of the ancilla
will yield the desired output in the memory
jxi ∼PjCðβj=λjÞjuji, with a success probability ofP

jðCβj=λjÞ2.
As argued elsewhere [5], conversions between the

classical vectors and their quantum counterparts, i.e., b⃗ ↔
jbi and x⃗ ↔ jxi, take extra time and may eventually kill the
exponential speedup gained during execution of the HHL
core. Nevertheless, the HHL algorithm provides a general
template and represents a real advance in the theory of
quantum algorithms. Our immediate goal in this experi-
ment is to implement a purely quantum version of the HHL
algorithm; i.e., we aim to test the above-mentioned HHL
core with quantum inputs and outputs.
In our demonstration, the four-qubit solver is set to run a

nontrivial instance, where the system matrix A is chosen as

A ¼
�
1.5 0.5
0.5 1.5

�
. The two quantum states corresponding

to the eigenvectors of A are ju1i ¼ ðj0i − j1iÞ= ffiffiffi
2

p
and

ju2i ¼ ðj0i þ j1iÞ= ffiffiffi
2

p
, with eigenvalues of λ1 ¼ 1 and

λ2 ¼ 2, respectively. Accordingly, our four qubits are
distributed into three subsets: the ancilla (Q4), the register
(Q2Q3), and the memory (Q1). The binary representations
of “Q2Q3”, “01” and “10”, record eigenvalues λ1 and λ2,
respectively. The input jbi is prepared inQ1 by single-qubit
rotations.
The prechosen 2 × 2 Hermitian matrix A allows us to

optimize the circuit that consists of three subroutines as
shown in Fig. 2(a), where all two-qubit gates fit to our
system Hamiltonian [Eq. (1)]. Subroutine 1: the phase
estimation subroutine is precompiled with a controlled-
phase (CZ) gate, two

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates, and two single-qubit

gates acting on the memory (Q1) and the register (Q2Q3),
which can be described as follows: first, prepare jbi ¼
β1ju1i þ β2ju2i inQ1, following which, the Hadamard gate
transforms Q1 to jbi ¼ β1j1i þ β2j0i; meanwhile a π
rotation on Q3 yields j01i in the jQ2Q3i register; next,
the sandwiched

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
-CZ-

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate combination

fulfills a controlled-iSWAP gate, which swaps the states
between Q2 and Q3 up to a phase factor of −i only if Q1 is
in j0i. At the end of this subroutine, the state of
jQ2Q3irjQ1im goes to β1j01irj1im − iβ2j10irj0im, which
correlates the binary representations of the eigenvalues in
the register (ignoring the phase factor as we omit up to a
single-qubit phase gate here) with the eigenstates in the
memory since j1i and j0i correspond to ju1i and ju2i,
respectively, up to a Hadamard gate. Subroutine 2: the
controlled rotation Rðλ−1Þ subroutine acts on the ancilla
(Q4), depending on the state of the register jQ2Q3i, whose

0 π 2π 3π 4π0

0.5

1

θ (rad)

 

 |0〉 |1〉

(a)

(b)

(c)

FIG. 2. (a) Compiled quantum circuits for solving 2 × 2 linear equations with four qubits. There are three subroutines and more than
15 gates as indicated. (b) The Bloch-sphere illustration of the controlled rotation subroutine for C ¼ 1, where the two rotation angles of
π and π=3 are achieved for eigenvalues λ1 ¼ 1 (j01i) and λ2 ¼ 2 (j10i), respectively. (c) The Q3–Q4 CZ gate. Top: qubit energy level
arrangement showing that the j0i ↔ j1i transition of the targetQ4 is on resonance with the j1i ↔ j2i transition of the control Q3. Only
whenQ3 is in j1i, the state inQ4 will make a full cycle and gain an additional phase of π. Middle: the quantum circuits for calibrating the
CZ gate sandwiched in between two π=2 rotations, where the second π=2 rotation axis has an angle θ from the X axis in the XY plane of
the Bloch sphere. Bottom: the calibrated Ramsey interference curves ofQ4 whenQ3 is in j0i (blue) and j1i (red), which differ by a phase
of π. No single-qubit phase gates were used during this measurement to cancel the dynamical phase due to the change of qubit frequency.
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effect can be best visualized using the Bloch sphere
representation as illustrated Fig. 2(b). Here, we choose
C ¼ 1, and according to Eq. (2), the rotation angles around
the Y axis forQ4 should be π for λ1 ¼ 1 and π=3 for λ2 ¼ 2.
Subroutine 3: this one is exactly the reverse of Subroutine
1, in which the register jQ2Q3i is disentangled and cleared,
and j1i and j0i are transformed back to the eigenstates ju1i
and ju2i, respectively, with the final Hadamard gate on Q1.
The compiled HHL circuits in Fig. 2(a) consist of more

than 15 one- and two-qubit gates, excluding phase com-
pensation and tomography gates that are not shown.
Execution of these gates with reasonably high precisions
are therefore important, though phase errors may not be
critical at certain steps, e.g., the process of mapping
eigenvalues to the register. Our single-qubit rotations have
been calibrated by randomized benchmarking to be of
reasonably high fidelity as limited by qubit coherence [33].
Q3’s π gate is 300 ns in length, and qubit coherence would
limit the gate fidelity to be just under 0.98. For the Q2–Q3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
and iSWAP gates, we tune the qubits on resonance

for periods of π=ð4g2;3Þ and π=ð2g2;3Þ, respectively, similar
to those demonstrated using the qubit-resonator architec-
ture [34]. However, here, due to the crosstalk issue, which
likely results from insufficient crossover wirings to tie the
grounds together [35], our

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
and iSWAP gates show

slightly lower performances, with fidelity values estimated
to be slightly above 0.98 and 0.97, respectively. For the CZ

gate, we include the qubit’s second excited state j2i and
implement similarly as that demonstrated using the qubit-
resonator architecture [36]. The fidelity of our CZ gate is
estimated to be about 0.95, using the calibrated Ramsey
interference data shown in Fig. 2(c). We note that the CZ

gate can also be implemented, with high fidelity and
without exchange of excitations, by optimizing one qubit’s
frequency trajectory to mediate the two-qubit j11i state
close to the avoided level crossing with the j02i state [19],
which would be hard to be implemented in our device due
to the crosstalk issue.
We prepare 18 different input states jbji for j ¼ 1 to 18

on the Bloch sphere as shown in Fig. 3(a). With the output
state stored in Q1, we can measure the expectation value of
a certain operator that we are interested in [see, e.g., the
case of jb1i ¼ j0i in Fig. 3(b)]. We can also characterize
the input and output states of the above instance by
quantum state tomography (QST): qubit polarization along
the Z axis of the Bloch sphere can be directly measured; for
polarizations along the X and Y axes, the qubit is rotated
around the Y and X axes, respectively, before measurement.
The corresponding output jxji in Q1 and the state ofQ4 are
simultaneously measured [29], which allows us to recon-
struct jxji using only the data corresponding to the j1i-state
outcome ofQ4. As shown in Fig. 3(c), fidelity values of the
18 output states by QST are reasonably high, ranging from
0.840� 0.006 to 0.923� 0.008.

With all the input and output states being measured, we
are able to characterize the solver more exactly by QPT,
where a nontrace-preserving process matrix in the Pauli
basis is used to linearly map jbji to jxji. The experimental
χexp matrix, inferred reliably only with all 18 input states

1

2

34

(a)

(c)

(b)

5
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1417

1516

18

in

FIG. 3. (a) 18 input quantum states indexed by the number j on
the Bloch sphere that are used to test the quantum linear solver.
(b) Expectation values of the three operators, where fX; Y; Zg are
the Pauli operators fσx; σy; σzg for the output state jxi when the
input state jb1i ¼ j0i. (c) Fidelity values of the output states
corresponding to the 18 input states jbji that are labeled on the
Bloch sphere in (a). Statistical errors are shown by error bars,
defined as�1 s.d., using the repeated sets of theQSTmeasurement.
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FIG. 4. Nontrace-preserving QPT characterizing the quantum
linear solver. Shown are the real parts of the experimental χexp
matrix (bars with color) and the ideal χid matrix (black frames),
where I is the identity and fX; Y; Zg are the Pauli operators
fσx; σy; σzg. All imaginary components (data not shown) of χexp
are measured to be no higher than 0.015 in magnitude.
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being used, and the ideal matrix χid are shown together in
Fig. 4 for comparison, which yields a process fidelity [37]
of F ¼ TrðχidχexpÞ=½TrðχidÞTrðχexpÞ� ¼ 0.837� 0.006.
Here, the error bar is estimated using simulated random
normal distributed noise associated with the QST data [38].
χexp has a trace of 0.497, which indicates the averaged
success probability of our solver for the 18 input states,
while ideally, the trace is 0.625 for C ¼ 1 [29].
In summary, we have demonstrated a superconducting

quantum linear solver for a 2 × 2 system with output state
fidelities ranging from 0.840� 0.006 to 0.923� 0.008 and
quantum process fidelity of 0.837� 0.006. The achieved
fidelities are limited by decoherence and by errors in our
implementation of the two-qubit gates, the latter of which is
related to the insufficient grounding that can be fixed by
adding an extra lithography layer in the device fabrication
[17,19]. With future improvements on superconducting
qubit coherence and circuit complexity, the superconduct-
ing quantum circuits could be used to implement more
intricate quantum algorithms on a larger scale and ulti-
mately reach quantum computational speedup.
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