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Tunneling of a quasibound state is a nonsmooth process in the entangled many-body case. Using time-
evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down)
tunneling. While the escape time scales exponentially with small interactions, the maximization time
of the von Neumann entanglement entropy between the remaining quasibound and escaped atoms scales
quadratically. Stronger interactions require higher-order corrections. Entanglement entropy is maximized
when about half the atoms have escaped.
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Tunneling is one of the most pervasive concepts in
quantum mechanics and is essential to contexts as diverse
as α decay of nuclei [1,2], vacuum states in quantum
cosmology [3] and chromodynamics [4], and photosyn-
thesis [5]. Macroscopic quantum tunneling (MQT), the
aggregate tunneling behavior of a quantum many-body
wave function, has been demonstrated in many condensed
matter systems [6,7] and is one of the remarkable features
of Bose-Einstein Condensates (BECs), ranging from
Landau-Zener tunneling in tilted optical lattices [8] to
the ac and dc Josephson effects in double wells [9,10], as
well as their quantum entangled generalizations [11]. The
original vision of quantum tunneling was in fact the
quantum escape or quasibound problem by Gamow in
1928 [1] and Gurney and Condon in 1929 [2], and recently,
the first mean-field or semiclassical observation of quantum
escape has been made in Toronto [12]. However, with the
rise of entanglement as a key perspective on quantum
many-body physics, the advent of powerful entangled
dynamics matrix-product-state (MPS) methods [13,14],
and the possibility of observing the moment-to-moment
time evolution of quasibound tunneling dynamics directly
in the laboratory [12,15–18], it is the right time to revisit
quantum escape. In this Letter, we take advantage of the
powerful new tool set for quantum many-body simulations
[14,19] to show that the many-body quantum tunneling
problem differs in key respects from our expectations from
semiclassical and other well-established approaches to
tunneling. Specifically, we use time-evolving block deci-
mation (TEBD) to follow lowly entangled matrix product
states [13,20] for the quantum escape of a quasibound
ultracold Bose gas, initially confined behind a potential
barrier; open source code at [21].
Whether between states in a double well [9,22], in

Landau-Zener [23] and orbital angular momentum contexts
[24], for quantum escape [25,26], for nonlinear de Broglie
(soliton) tunneling in matter waves [27,28] or nonlinear
optics [29–31], or even in a variational parameter space
[32], MQT has, up until now, mainly been treated under

semiclassical approximations such as the instanton
approximation and Jeffreys-Wentzel-Kramers-Brillouin
(JWKB), as well as the nonlinear Schrodinger equation
(NLS). Mathematical analogies between NLS equations
and the Gross-Pitaevskii equation are particularly strong
[33], notably in the nonlinear optics community where
advances in the understanding of coherent and partially
incoherent solitons [34–43] raise many questions regarding
how many-body quantum mechanics impacts nonlinear de
Broglie tunneling; i.e., many-body effects cause fragmen-
tation and depletion of BECs, which can render the mean
field ineffective. Beyond mean-field, semiclassical, and
instanton approaches, two time-evolving many-body stud-
ies have been performed recently. First, an explicit com-
parison between instanton and TEBD Bose-Hubbard-based
predictions has been performed for superfluid decay
[44,45], establishing explicit numerical limits on the
instanton approach; this method is nearly identical to ours
but treats discrete-to-discrete state or double-well-type
tunneling, in this case, between two rotational states on
a ring. Second, the quantum escape problem has been
studied with the time-adaptive many-body method known
as multiconfigurational time-dependent Hartree theory for
bosons [11,46]; this work treated quantum depletion but
not von Neumann entropy and number fluctuations. In
contrast, our approach accesses a wide variety of quantum
measures to elucidate the underlying many-body quantum
features of quasibound escape dynamics and shows the
explicit convergence to mean-field-type dynamics. Such
measures clarify when semiclassical approaches are and are
not applicable. They also show that hiding in the semi-
classical averaged picture are other many-body features
with radically different scalings; the escape time tesc, i.e.,
the time at which the average number of remaining
quasibound atoms falls to 1=e of its initial value, varies
exponentially with interaction for only a limited range
near zero. We will show that accurately describing the
scaling of tesc and other many-body observables over many
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interaction strengths requires the effect of higher-order
quantum corrections.
Consider a system of N bosons at zero temperature in the

canonical ensemble. To simulate such a system, we can
either invoke an explicit optical lattice of L sites, deep
enough for tight binding and single-band approximations to
be valid, or we can simply choose a discretization scheme.
Either way, the Bose Hubbard Hamiltonian (BHH) is an
appropriate model,

Ĥ ¼ −J
XL−1

i¼1

ðb̂†iþ1b̂i þH:c:Þ þ
XL

i¼1

�
U
2
n̂iðn̂i − 1̂Þ þVext

i n̂i

�
:

ð1Þ
In Eq. (1), J is the energy of hopping, andU determines the
on-site two-particle interactions. An external rectangular
potential barrier, of width w and height h, is given by Vext

i .
The field operator b̂†i (b̂i) creates (annihilates) a boson at
the ith site, and n̂i ≡ b̂†i b̂i. We will work in hopping units:
energies are scaled to J and time t to ℏ=J. We use open
boundary conditions, as convenient for TEBD. TEBD is a
superior method because it gives us access to quintessential
many-body quantities like entanglement. Instanton meth-
ods offer another approach towards calculating tunneling
rates within a semiclassical approximation [47] but are
rapidly rendered inaccurate for larger interaction strengths
[48], whereas TEBD suffers from no such limitations.
To describe the system from a mean-field perspective,

the discrete NLS (DNLS) may either be obtained via
discretization of the NLS or from a mean-field approxi-
mation of the BHH. In the latter case, one can propagate the
field operator b̂i forward in time using the BHH in the
Heisenberg picture: iℏ∂tb̂i ¼ ½b̂i; Ĥ�. Assuming the many-
body state is a product of Glauber coherent states
hb̂†i b̂ib̂ii ¼ ψ�

iψ iψ i, where ψ i ≡ hb̂ii, leads to the DNLS,

iℏ _ψ i ¼ −Jðψ iþ1 þ ψ i−1Þ þ gjψ ij2ψ i þ Vext
i ψ i: ð2Þ

In Eq. (2), the condensate order parameter ψ i is normalized
to the number of atoms N ¼ P

L
i¼1 jψ ij2. Mean-field

simulations are performed using a fourth-order Runge-
Kutta adaptation of Eq. (2). The BHH approaches the
DNLS in the mean-field limit N → ∞, U → 0, NU=J ¼
const. We emphasize that both the BHH and the DNLS are
single-band models, valid when the many-body wave
function covers many sites and has variations larger than
the lattice constant. A true continuum limit is possible for
NJ=L ¼ const, N=L → 0, and J → ∞; however, this
would restrict us numerically to very small numbers of
atoms [49] and prevent us from approaching the mean-field
limit of NU ¼ const, N → ∞, U → 0; it can also require
different discretization schemes than the BHH, depending
on the interaction strength and regime of interest. We
therefore restrict ourselves to the semidiscrete regime
appropriate to both the BHH and DNLS.

We initialize the many-body wave function via imagi-
nary-time relaxation to trap the atoms in a quasibound state
behind the barrier as illustrated in Fig. 1. We set Vext to
height h ¼ 0.05 and width wI , effectively reducing the
system size. At t ¼ 0, in real time, the barrier is decreased
to width w, where w is typically one to five sites, such that
the atoms can escape on a time scale within reach of TEBD
simulations. We choose L large enough so that reflections
from the box boundary at the far right do not return to the
barrier in simulation times of interest: treflect ≫ tesc. Further
numeric procedure and implementation details are given in
the Supplemental Material [50]. Evolving in real time, we
first make a coarse observation of the dynamics of MQT in
Fig. 2 by plotting the average atom number in different
regions for repulsive interactions in order to determine tesc.
We find similar results for attractive interactions, but with
larger tesc.
How do many-body predictions compare to mean-field

ones? We define tMF
esc and tMB

esc as the mean-field and many-
body escape times, respectively. For fixed NU=J, w, and h,
the DNLS gives the same result independent of N and U,
tMB
esc → tMF

esc only in the large N small jUj mean-field limit,
and w2h determines the barrier area. Figure 3 illustrates
our exploration of this parameter space. The dynamics of
MQT predicted by the DNLS and BHH differ strongly
when N is small. For example, in Fig. 3(c), for repulsive
(attractive) interactions NU=J ¼ þ0.15 (NU=J ¼ −0.15)
and barrier width w ¼ 5, the BHH predicts a decrease
(increase) in tMB

esc , approaching a nearly constant value
for N ≳ 20. This same trend is apparent for various
barrier areas, Figs. 3(a)–3(b). In Fig. 3(d), we also show
the quantum depletion D for NU=J ¼ �0.30, w ¼ 5,
D≡ 1 − ðλ1Þ=ð

P
L
m¼1 λmÞ, where fλmg are the eigenvalues

of the single-particle density matrix hb̂†i b̂ji, and λ1 is
the largest eigenvalue; larger D corresponds to a more

FIG. 1. Initial quasibound state. The many-body wave function
for N ¼ 20, with NU=J ¼ þ0.15 (blue shaded region, points
show actual TEBD results for the density average hn̂ii), is first
localized to the left behind the barrier (red line, red and pink
shaded areas) via relaxation in imaginary time with a barrier of
height h and initial width wI . At t ¼ 0, in real-time propagation,
the barrier is reduced to width w (solid red line, red shaded area)
so the now-quasibound Bose gas can commence macroscopic
quantum tunneling. The hard wall at the left and relatively small
barrier area push the density tail to partially extend to the right.
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fragmented (less condensed) state. The largest fragmenta-
tion for both attractive and repulsive interactions occurs for
N ¼ 2. As N increases, depletion decreases monotonically,
with N ¼ 20 reaching D ≈ 0.10 (D ≈ 0.04) for attractive
(repulsive) interactions. This decreased fragmentation
allows the DNLS to give accurate predictions for tMB

esc
for larger N.

Systematic error in TEBD [51] for tMB
esc results from the

Schmidt truncation (χ), the truncation in the on-site Hilbert
space dimension (d) and the time resolution at which we
write out data ðδtÞ. The hardest many-body measures to
converge, such as the block entropy, at χ ¼ 35 have an error
≲10−3 for N ¼ 70 and were checked up through χ ¼ 55;
due to small U and effective system size, much lower χ is
required than usual in TEBD. For up toN ¼ 10, we have not
truncated d, but for larger N up to 80, we truncated the
attractive (repulsive) case to d ¼ 20 (d ¼ 15). A lower
truncation results in decreased tMB

esc , e.g., by 10% for d ¼ 5,
NU=J ¼ −0.1, and N ¼ 10, even though maxðhn̂iÞ < 1
since more weight is given to spread-out Fock states. The
attractive BHH requires much higher d than the repulsive
BHH since U < 0 increases number fluctuations in high-
density regions, i.e., behind the barrier at t ¼ 0. In both
cases, in general, we find on-site number fluctuations play a
surprisingly strong role in tunneling processes compared to
usual for TEBD. The BHH also has a number of sources of
systematic error, the most important of which is virtual
fluctuations to the second band; however, since we compare
single-band DNLS to single-band BHH, this does not effect
our comparison. In general, we expect fluctuations to higher
bands will speed up tunneling; therefore, our calculations
may be taken as a lower bound for experiments.
We explore the effect of interaction in Fig. 4 by

examining observables for 11 equally spaced values of
NU=J ∈ ½−0.60; 0.60�. Of particular interest to MQT is the
von Neumann block entropy, characterizing entanglement
between the remaining quasibound atoms and the escaped
atoms Sl ≡ −Trðρ̂l log ρ̂lÞ, where ρ̂l is the reduced density
matrix for the well plus barrier. The key features of Sl are
illustrated in a nearly universal curve in Fig. 4(a): on the
lower right side, tunneling has not yet commenced. Sl
maximizes partway through the tunneling process in the
center of the curve at Nl=N ≃ 1=2, and Sl then decreases
again to the left as the atoms finish tunneling out.
Define tMB

s as the time at which Sl is maximized,
and define tMB

f as the time at which the slope of the

(a)

(d) (e) (f)

(b) (c)

FIG. 2. Many-body tunneling and the calculation of decay time.
Barrier widths (a),(d) w ¼ 1, (b),(e) w ¼ 3, and (c),(f) w ¼ 5. Top
row: average atom number per site. Bottom row: number in well
hn̂welli (magenta), number in barrier hn̂bari (cyan), and escaped
hn̂esci (tan) atoms; the 1=e decay time all �0.1. All plots for
NU=J ¼ þ0.30, with N ¼ 20.

(a) (b)

(d)(c)

FIG. 3. Many-body (MB) vs mean-field (MF) escape time
predictions. Solid lines: repulsive (REP). Dashed lines: attractive
(ATT). (a)–(b) Dependence of tMB

esc on barrier area and atom
number for (a) NU=J ¼ �0.15 and (b) NU=J ¼ �0.30. (c) tMB

esc

plateaus towards tMF
esc for 10 to 80 atoms, as shown for NU=J ¼

�0.15 and w ¼ 5. (d) Depletion for NU=J ¼ �0.30 and w ¼ 5;
attractive markers semitransparent for readability. Curves are a
guide to the eye; points represent actual data with error bars
smaller than data point in all panels. Panel (d) legend corresponds
to (a),(b), and (d).

Attractive

Repulsive

(a) (b)

FIG. 4. Many-body quantum measures. (a) Nearly universal
curve for the entropy of entanglement vs the average number of
trapped atoms. Black line: no interaction. Darker red/blue corre-
sponds to higher jNU=Jj. (b) Observables demonstrate very differ-
ent scaling with interaction. Points show actual data (error bars
smaller than points), while lines are best fit curves. All plots treat
N ¼ 6, with 11 equally spaced values of NU=J ∈ ½−0.60; 0.60�.
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number fluctuations (dfl=dt) is largest before tMB
esc , where

fl ¼ ðhN2
l i − hNli2Þ=hNli, Nl is the number of atoms to

the left of site l, and l is taken at the outer edge of the
barrier; see Supplemental Material [50] for further dis-
cussion of fluctuations. We find tMB

s , tMB
f , and tMB

esc increase
with decreasing U, as shown in Fig. 4(b). As NU=J
decreases, we approach the self-trapping regime, where
escape times become much longer than the lifetime of the
system. While tMB

esc increases smoothly as NU=J decreases,
dfl=dt is strongly influenced by change in NU=J, with a
noticeable increase near NU=J ≈ −0.3 and a steady flat-
tening out as we approach self-trapping interaction strength.
A best fit line for tMB

f , covering all NU=J, requires an
exponential of a second-order polynomial, while an expo-
nential fits well for −0.3 < NU=J < 0.3. In the coarser
measure tMB

esc , we find exponential scaling when −0.4 <
NU=J < 0.4; a third-order polynomial in the exponential is
required to accurately capture the strong interaction regimes,
as shown in the fit in Fig. 4(b).We find that tMB

s scales linearly
only for −0.1 < NU=J < 0.1, quadratically for −0.4 <
NU=J < 0.4, and requires a cubic polynomial fit to cover
the entire interaction regime. Results in Fig. 4 are forN ¼ 6;
we found similar results for up to N ¼ 20, although
simulations are limited in the large jUj regime.
Another experimental signature is the density-density

correlations gð2Þij ¼hn̂in̂ji−hn̂iihn̂ji, extractable from noise

measurements [52,53]; gð2Þ is zero in mean-field theory. As
customary, we subtract off the large diagonal matrix

elements of gð2Þ to view the underlying off-diagonal
structure. In Figs. 5(a)–5(c), we show gð2Þ for N ¼ 40,
NU=J ¼ −0.015, and w ¼ 2, dividing up the system to
observe correlations between the three physical regions:
trapped, under the barrier, and escaped. We initially
observe near-zero correlations everywhere except near
the many-body wave function peak. At t ¼ 62 ≈ tMB

s ,
gð2Þ shows many negatively correlated regions (gð2Þ < 0),
which are broken up by the potential barrier. In Fig. 5(d),
we also show that quantum depletion increases with
increasing w for NU=J ¼ �0.15, with N ¼ 2. In compari-
son to Fig. 3(d) (NU=J ¼ �0.30), D doesn’t become as
large for Fig. 5(d) (NU=J ¼ �0.15) because of the smaller
NjUj=J value. The growth inD emphasizes the many-body
nature of the escape process.
In conclusion, we have performed quantum many-body

simulations of the macroscopic quantum tunneling of
attractive and repulsive bosons using TEBD to time evolve
the Bose-Hubbard Hamiltonian, treating the original 1929
quasibound or quantum escape problem. Similar to mean-
field double-well tunneling [54,55], we find that repulsive
(attractive) interactions speed up (slow down) tunneling for
the escape problem. We found strong deviations from
mean-field predictions and provided quantitative bounda-
ries by which one can judge the legitimacy of applying
mean-field theory to this problem. Even a low average
order moment like escape time was shown to deviate from
simple exponential scaling for stronger interactions.
Higher-order quantum measures, like the entropy of entan-
glement between the quasibound and escaped atoms and
the slope of number fluctuations, reached a maximum at
times which exhibited scaling behaviors with interactions
ranging from polynomial to exponential to exponential
of a polynomial, showing that tunneling dynamics are far
richer in the quantummany-body picture. Finally, our study
shows that many-body effects in macroscopic quantum
tunneling can be experimentally observed via the number
fluctuations and density-density correlations as well as the
dependence of escape time on interactions.

This material is based in part upon work supported by the
US National Science Foundation under Grants No. PHY-
1306638, No. PHY-1207881, and No. PHY-1520915, and
the US Air Force Office of Scientific Research Grant
No. FA9550-14-1-0287.

[1] G. Gamow, Z. Phys. 51, 204 (1928).
[2] R. W. Gurney and E. U. Condon, Phys. Rev. 33, 127 (1929).
[3] S. Coleman, Phys. Rev. D 15, 2929 (1977).
[4] D. M. Ostrovsky, G. W. Carter, and E. V. Shuryak, Phys.

Rev. D 66, 036004 (2002).
[5] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P.

Brumer, and G. D. Scholes, Nature (London) 463, 644
(2010).

(a) (b)

(c) (d)

FIG. 5. Time dependence of density-density correlations. (a)–
(c) gð2Þ shows correlations between trapped and escaped atoms.
The barrier, indicated by white lines, breaks up negatively
correlated regions (red); shown are time slices at (a) t ¼ 0,
(b) t ¼ 62 ≈ ts, and (c) t ¼ 125 ≈ tMB

esc . (d) Quantum depletion
grows rapidly for N ¼ 2, with NU=J ¼ �0.15. Solid lines:
repulsive. Dashed semitransparent lines: attractive. Curves are
a guide to the eye; points represent actual data (error bars smaller
than points).

PRL 118, 210403 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
26 MAY 2017

210403-4

https://doi.org/10.1007/BF01343196
https://doi.org/10.1103/PhysRev.33.127
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.66.036004
https://doi.org/10.1103/PhysRevD.66.036004
https://doi.org/10.1038/nature08811
https://doi.org/10.1038/nature08811


[6] L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli,
and B. Barbara, Nature (London) 383, 145 (1996).

[7] Y. Nakamura, Y. Pashkin, and J. Tsai, Nature (London) 398,
786 (1999).

[8] B. P. Anderson and M. A. Kasevich, Science 282, 1686
(1998).

[9] M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani,
and M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).

[10] I. S. S. Levy, E. Lahoud, and J. Steinhauer, Nature (London)
449, 579 (2007).

[11] R. Beinke, S. Klaiman, L. S. Cederbaum, A. I. Streltsov, and
O. E. Alon, Phys. Rev. A 92, 043627 (2015).

[12] S. Potnis, R. Ramos, K. Maeda, L. D. Carr, and A.
Steinberg, Phys. Rev. Lett. 118, 060402 (2017).

[13] U. Schollwoeck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[14] M. LWall and L. D. Carr, New J. Phys. 14, 125015 (2012).
[15] D. Stadler, S. Krinner, J. Meineke, J.-P. Brantut, and T.

Esslinger, Nature (London) 491, 736 (2012).
[16] G. Zürn, A. N. Wenz, S. Murmann, A. Bergschneider, T.

Lompe, and S. Jochim, Phys. Rev. Lett. 111, 175302 (2013).
[17] A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall,

M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A.
Regal, Science 345, 306 (2014).

[18] T. Schweigler, V. Kasper, S. Erne, B. Rauer, T. Langen, T.
Gasenzer, J. Berges, and J. Schmiedmayer, arXiv:1505
.03126.

[19] ALPS Collaboration, http://alps.comp‑phys.org.
[20] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[21] TEBD, Time-Evolving Block Decimation open source

code, https://sourceforge.net/projects/opentebd.
[22] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phys.

Rev. A 59, 620 (1999).
[23] M. Cristiani, O. Morsch, J. H. Müller, D. Ciampini, and E.

Arimondo, Phys. Rev. A 65, 063612 (2002).
[24] M. Heimsoth, D. Hochstuhl, C. E. Creffield, L. D. Carr, and

F. Sols, New J. Phys. 15, 103006 (2013).
[25] N. Moiseyev, L. D. Carr, B. A. Malomed, and Y. B. Band,

J. Phys. B 37, L193 (2004).
[26] L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B

38, 3217 (2005).
[27] G. Dekel, V. Farberovich, V. Fleurov, and A. Soffer, Phys.

Rev. A 81, 063638 (2010).
[28] V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, J. Mod. Opt.

60, 116 (2013).
[29] A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev,

Phys. Rev. Lett. 100, 153901 (2008).
[30] M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G.

Assanto, Phys. Rev. Lett. 101, 153902 (2008).
[31] T. L. Belyaeva and V. N. Serkin, Eur. Phys. J. D 66, 153

(2012).

[32] M. Ueda and A. J. Leggett, Phys. Rev. Lett. 80, 1576
(1998).

[33] T. L. Belyaeva, V. N. Serkin, C. Hernandez-Tenorio, and F.
Garcia-Santibaez, J. Mod. Opt. 57, 1087 (2010).

[34] D. N. Christodoulides, E. D. Eugenieva, T. H. Coskun,
M. Segev, and M. Mitchell, Phys. Rev. E 63, 035601
(2001).

[35] D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M.
Segev, Phys. Rev. Lett. 78, 646 (1997).

[36] D. N. Christodoulides, T. H. Coskun, and R. I. Joseph, Opt.
Lett. 22, 1080 (1997).

[37] T. H. Coskun, D. N. Christodoulides, M. Mitchell, Z. Chen,
and M. Segev, Opt. Lett. 23, 418 (1998).

[38] E. D. Eugenieva, D. N. Christodoulides, and M. Segev, Opt.
Lett. 25, 972 (2000).

[39] V. P. Nayyar, J. Opt. Soc. Am. B 14, 2248 (1997).
[40] A. Hasegawa, Phys. Fluids 18, 77 (1975).
[41] A.W. Snyder and D. J. Mitchell, Phys. Rev. Lett. 80, 1422

(1998).
[42] V. V. Shkunov and D. Z. Anderson, Phys. Rev. Lett. 81,

2683 (1998).
[43] O. Bang, D. Edmundson, and W. Krolikowski, Phys. Rev.

Lett. 83, 5479 (1999).
[44] I. Danshita and A. Polkovnikov, Phys. Rev. B 82, 094304

(2010).
[45] I. Danshita and A. Polkovnikov, Phys. Rev. A 85, 023638

(2012).
[46] A. U. J. Lode, A. I. Streltsov, K. Sakmann, O. E. Alon, and

L. S. Cederbaum, Proc. Natl. Acad. Sci. U. S. A. 109, 13521
(2012).

[47] A. I. Vanshten, V. I. Zakharov, V. A. Novikov, and M. A.
Shifman, Sov. Phys. Usp. 25, 195 (1982).

[48] I. Danshita and A. Polkovnikov, Phys. Rev. B 82, 094304
(2010).

[49] D. Muth, B. Schmidt, and M. Fleischhauer, New J. Phys. 12,
083065 (2010).

[50] Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.118.210403 for further quantum
measures and numerical implementation.

[51] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[52] E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70,

013603 (2004).
[53] M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, Phys.

Rev. Lett. 94, 110401 (2005).
[54] V. O. Nesterenko, A. N. Novikov, A. Y. Cherny, F. F.

de Souza Cruz, and E. Suraud, J. Phys. B 42, 235303
(2009).

[55] V. Nesterenko, A. Novikov, and E. Suraud, Laser Phys. 24,
125501 (2014).

PRL 118, 210403 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
26 MAY 2017

210403-5

https://doi.org/10.1038/383145a0
https://doi.org/10.1038/19718
https://doi.org/10.1038/19718
https://doi.org/10.1126/science.282.5394.1686
https://doi.org/10.1126/science.282.5394.1686
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1103/PhysRevLett.118.060402
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1088/1367-2630/14/12/125015
https://doi.org/10.1038/nature11613
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1126/science.1250057
http://arXiv.org/abs/1505.03126
http://arXiv.org/abs/1505.03126
http://alps.comp-phys.org
http://alps.comp-phys.org
http://alps.comp-phys.org
https://doi.org/10.1103/PhysRevLett.91.147902
https://sourceforge.net/projects/opentebd
https://sourceforge.net/projects/opentebd
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.65.063612
https://doi.org/10.1088/1367-2630/15/10/103006
https://doi.org/10.1088/0953-4075/37/9/L02
https://doi.org/10.1088/0953-4075/38/17/012
https://doi.org/10.1088/0953-4075/38/17/012
https://doi.org/10.1103/PhysRevA.81.063638
https://doi.org/10.1103/PhysRevA.81.063638
https://doi.org/10.1080/09500340.2012.753478
https://doi.org/10.1080/09500340.2012.753478
https://doi.org/10.1103/PhysRevLett.100.153901
https://doi.org/10.1103/PhysRevLett.101.153902
https://doi.org/10.1140/epjd/e2012-30214-2
https://doi.org/10.1140/epjd/e2012-30214-2
https://doi.org/10.1103/PhysRevLett.80.1576
https://doi.org/10.1103/PhysRevLett.80.1576
https://doi.org/10.1080/09500340.2010.499043
https://doi.org/10.1103/PhysRevE.63.035601
https://doi.org/10.1103/PhysRevE.63.035601
https://doi.org/10.1103/PhysRevLett.78.646
https://doi.org/10.1364/OL.22.001080
https://doi.org/10.1364/OL.22.001080
https://doi.org/10.1364/OL.23.000418
https://doi.org/10.1364/OL.25.000972
https://doi.org/10.1364/OL.25.000972
https://doi.org/10.1364/JOSAB.14.002248
https://doi.org/10.1063/1.860997
https://doi.org/10.1103/PhysRevLett.80.1422
https://doi.org/10.1103/PhysRevLett.80.1422
https://doi.org/10.1103/PhysRevLett.81.2683
https://doi.org/10.1103/PhysRevLett.81.2683
https://doi.org/10.1103/PhysRevLett.83.5479
https://doi.org/10.1103/PhysRevLett.83.5479
https://doi.org/10.1103/PhysRevB.82.094304
https://doi.org/10.1103/PhysRevB.82.094304
https://doi.org/10.1103/PhysRevA.85.023638
https://doi.org/10.1103/PhysRevA.85.023638
https://doi.org/10.1073/pnas.1201345109
https://doi.org/10.1073/pnas.1201345109
https://doi.org/10.1070/PU1982v025n04ABEH004533
https://doi.org/10.1103/PhysRevB.82.094304
https://doi.org/10.1103/PhysRevB.82.094304
https://doi.org/10.1088/1367-2630/12/8/083065
https://doi.org/10.1088/1367-2630/12/8/083065
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.210403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.210403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.210403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.210403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.210403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.210403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.210403
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevLett.94.110401
https://doi.org/10.1103/PhysRevLett.94.110401
https://doi.org/10.1088/0953-4075/42/23/235303
https://doi.org/10.1088/0953-4075/42/23/235303
https://doi.org/10.1088/1054-660X/24/12/125501
https://doi.org/10.1088/1054-660X/24/12/125501

