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It is an undisputed textbook fact that nonretarded van der Waals (vdW) interactions between isotropic
dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality.
The universality of vdWattraction is attributed to the dipolar coupling between fluctuating electron charge
densities. Here, we demonstrate that the long-range interaction between spatially confined vdW dimers
becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our
analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states
for two quantum harmonic oscillators embedded in spaces with reduced dimensionality; however, the long-
range repulsion is expected to be a general phenomenon for spatially confined quantum systems. We
suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular
interactions in nanoscale environments, and rationalize the recent observation of anomalously strong
screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.
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Interactions induced by quantum-mechanical charge
density fluctuations, such as van der Waals (vdW) and
Casimir forces, are always present between objects with
finite dimensions [1–4]. Such interactions are important not
only for many fundamental phenomena throughout the
fields of biology, chemistry, and physics but also for the
design and performance of micro- and nano-structured
devices. While Casimir forces can be both attractive or
repulsive, depending on the nature of the fluctuations
(quantum and/or thermal) and the spatial structure (top-
ology and/or geometry) of the interacting systems [5–8], it
is undisputed common wisdom that nonretarded vdW
interactions between two objects in vacuo are inherently
attractive [9–11]. The universality of vdW attraction is
attributed to the ubiquitous zero-point energy lowering,
induced by dipolar coupling between fluctuating electron
charge densities [9,10].
However, many biological, chemical, and physical phe-

nomena of importance in materials happen in spatially
confined environments, as opposed to isotropic and homo-
geneous vacuum. The confinement can be artificially
engineered by applying static or dynamic electromagnetic
fields or arise as a result of the encapsulation of molecules
in nanotubes, fullerenes, and/or by adsorption on polar-
izable surfaces. Moreover, in biological systems, proteins
are typically confined in an inhomogeneous environment.
We remark that even when such confinement entails tiny
modification of the electron density (having no apparent
effect on the electrostatics), it can visibly affect the
interactions stemming from density fluctuations due to
their long-range inhomogeneous nature.
Here, we demonstrate that the breaking of rotational

and/or translational symmetry of 3D vacuum results
in repulsive long-range interactions for vdW dimers.

The repulsive interaction stems from the full Coulomb
coupling between charge density fluctuations and is a
universal signature of constrained electric-field lines in
1D, 2D, or quasi-3D spaces. In fact, reported cases of long-
range repulsion between physisorbed molecules abound in
recent experimental literature [12–16]. The usual explan-
ation attributes the repulsion to the charge transfer between
the Fermi level of the metal surface and the molecular
orbitals of the adsorbate [17] or the dominance of Pauli
repulsion over a London-type dispersion interaction
[18–20]. These explanations, however, do not apply to
large molecules physisorbed on metallic surfaces. Our
calculations suggest an alternative explanation for these
and other experiments in nano-confined systems. In con-
trast to previously known cases of van der Waals repul-
sions, which are either mediated by another molecule
(three-body Axilrod-Teller-Muto interaction [21]) or a
dielectric medium [19], the present effect has a different
distance dependence and it exists under arbitrary
confinement.
We start our analysis by investigating a pair of coupled

isotropic 3D Drude oscillators [22–24] (charge-separated
overall-neutral quantum harmonic oscillators) in reduced
spatial dimensions [see Fig. 1(a) and discussion below].
The Drude oscillators model the instantaneous quantum-
mechanical electronic fluctuations (not the permanent
deformations of the electron density), therefore being a
model for electron correlation via the adiabatic connection
fluctuation-dissipation theorem [25]. Consequently, the
analysis of this work corresponds to dynamic electron
correlation effects in confined environments. Despite
being bosonic, Drude oscillators [22] provide a reliable
and robust model of van der Waals interactions between
valence electron densities [26–40]. For example, the
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harmonic oscillator model, within the so-called many-body
dispersion (MBD) framework, has been applied to accu-
rately model vdW interactions in molecules, molecular
crystals, solids with and without defects, surfaces, and
nanostructured materials [31,41–45]. Here, we go beyond
the MBD model by developing a perturbative analysis
to study the effects of the full Coulomb interaction on
the physically confined electric-field lines of the dipole-
coupled Drude oscillators.
The developments in this article are based on the

perturbation theory of Coulomb-coupled Drude oscillators
developed by Jones et al. in Ref. [33]. We also develop and
apply an alternative perturbation expansion, which takes
coupled dipolar oscillators as a starting point.
Individual Drude oscillators follow the quantum

mechanics of harmonic oscillators of frequency ω and
mass μ. The full Coulomb potential between a pair of

Drude oscillators, each connected to charges �q (using
vacuum permittivity ϵ0 ¼ 1=4π), is

V ¼ q2
�

1

jRj þ
1

jR− r1þ r2j
−

1

jR− r1j
−

1

jRþ r2j
�
; ð1Þ

where R, r1, and r2 refer to the interoscillator separation
vector and individual oscillator coordinates (positive
charges are origins of individual oscillators’ coordinates),
respectively [see Fig. 1(a)]. The zero-distance limit for r1
and r2, a presumably valid approximation at large R,
results in a widely used dipole-approximated potential

Vdip ¼
q2

R5
fR2r1 · r2 − 3ðr1 ·RÞðr2 ·RÞg; ð2Þ

which allows an exact solution of the coupled oscillator
problem and leads to an interoscillator attraction, regardless
of the oscillator parameters and dimensionality of space. A
general 3D oscillator state jni (total quanta n) is the product
of three independent 1D oscillators

hζjni ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2nζnζ!

p
�
μζωζ

πℏ

�
1=4

e−½μζωζζ
2=2ℏ�Hnζ

� ffiffiffiffiffiffiffiffiffiffi
μζωζ

ℏ

r
ζ

�
;

ð3Þ
where ζ ∈ fx; y; zg, n ¼ P

ζnζ, and Hnζ is a Hermite
polynomial of order nζ. Therefore, any energy integral
corresponding to Eq. (1) for a 3D Drude oscillator can be
expressed as the product of three independent 1D integrals
due to the identity

1

r
¼ 2ffiffiffi

π
p

Z
∞

0

e−s
2r2ds: ð4Þ

Now, we will consider the limiting case of confinement
as complete quenching of oscillator motion in one or
more directions, which is equivalent to negligible polar-
izations in those directions. A mathematical equivalent
of fully quenched motion of one of the oscillator compo-
nents (say Z) can be obtained via nz ¼ 0 and μz → ∞.
Consequently, the 3D model transforms to an effective 2D
model, following the identity δðxÞ ¼ lima→∞ða=

ffiffiffi
π

p Þe−a2x2.
Similarly, we can obtain an effective 1D model by
completely confining two dimensions of the original 3D
model. The resulting effective quasi-1D/2D potentials vary
with the inverse of interoscillator distance (this will be
called “Coulomb” potential henceforth) but do not satisfy
the Laplace equation for the oscillator charges, unlike the
original 3D model. Physically, the restricted motions
confine the electric-field lines in a restricted region of
space, which produces repulsion between the oscillators, as
we will show below.
We start by analyzing the quantum mechanics of a full-

Coulomb-coupled 1D oscillator dimer. Formally, a Taylor
expansion of the interoscillator (with individual coordinates
x1 and x2) 1D “Coulomb” potential is

FIG. 1. (a) Drude oscillators embedded in the global refer-
ence frame (blue). (b) Probability density of uncoupled
oscillators ρ0 placed at �2.5 bohr (black), the difference
density (Δρ ¼ ρdip − ρ0) of dipole-correlated oscillators (red),
and the Δρ for the pair of oscillators (blue) placed at �1 bohr.
(c) Leading-order interaction terms of beyond-dipole pertur-
bation expansion in 1D for q ¼ m ¼ ω ¼ 1 [See Eqs. (13)–
(16) for the definition of ε1, ε1 and η1].
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V int ¼
X∞
m¼2

Vm ¼ q2

R

X∞
m¼2

Xm−1

k¼1

�
m

k

�
xm−k
1 ð−x2Þk

Rm : ð5Þ

Full-Coulomb-coupled oscillator states can be obtained by
perturbing independent oscillator states with V int, starting
with dipole potential given by the m ¼ 2 term in Eq. (5)
(full-Coulomb perturbation) or perturbing the analytic
dipole-coupled oscillator states [38] by V int, starting from
m ¼ 3 of Eq. (5) (beyond-dipole perturbation expansion).
While these two approaches are formally equivalent, in
practice, the beyond-dipole expansion converges faster and
allows novel insights into Coulomb-coupled oscillators
(see Ref. [46]).
A system of two similar (mass μ and frequency ω)

dipole-coupled 1D Drude oscillators is equivalent to two
independent oscillators [22–24] in collective coordinates

a1 ¼
x1 þ x2ffiffiffi

2
p ; ð6Þ

a2 ¼
x1 − x2ffiffiffi

2
p ; ð7Þ

with frequencies ω1 ¼ ω=f− and ω2 ¼ ω=fþ, respectively,
where

f� ¼
�
1� 2q2

μω2R3

�−1=2
: ð8Þ

Figure 1(b) shows the anisotropic charge density that is
created around free oscillator states due to dipole coupling,
leading to emerging dipole moments. The consequent
lowering of zero-point energy contains London attraction
(−C6=R6) as the leading contribution but does not contain
effects due to higher-order multipole moments [38]. We
now employ beyond-dipole perturbation expansion on
these dipole-coupled states as defined in the previous
paragraph. Two leading-order perturbation terms corre-
spond to m ¼ 3 and 4 in Eq. (5), and when expressed in
collective coordinates a1 and a2 [Eqs. (6) and (7)], they are

V3 ¼
−3q2ffiffiffi
2

p
R4

ða21a2 − a32Þ ð9Þ

and

V4 ¼
q2

2R5
ð7a42 − a41 − 6a21a

2
2Þ; ð10Þ

respectively. The ground state of dipole-coupled oscillators
has even symmetry with respect to a1 and a2. Hence, the
leading contribution to the first-order beyond-dipole per-
turbation theory comes from leading even-order potential in
Eq. (5) (viz. V4), yielding the first-order correction from
fourth-order potential [Eq. (10)] (superscript and subscript
on energy components indicate order of perturbation and
order of potential, respectively)

Eð1Þ
4 ¼ 3q2

8R5

�
ℏ
μω

�
2

½7f2þ − f2− − 2f−fþ�: ð11Þ

Similar symmetry consideration yields the leading
second-order perturbation correction from Eq. (9) (see
Supplemental Material [47] for details):

Eð2Þ
3 ¼ −

9q4

16μω2R8

�
ℏ
μω

�
2

½3f2þ − fþf−�2: ð12Þ

The power series expansion of Eq. (11) in powers of R
[using Eq. (8)] yields

Eð1Þ
4 ¼ ε1 þ ε2 þ � � � ¼ 2

α2ℏω

R5
− 8

α2α1ℏω
R8

þ � � � ð13Þ

The appearance of quadrupole polarizability α2 ¼
3
4
ðq2=μω2Þðℏ=μωÞ in the leading repulsive term

ε1 ¼ 2
α2ℏω

R5
ð14Þ

and the following attractive term

ε2 ¼ −8
α2α1ℏω

R8
ð15Þ

indicates that ε1 corresponds to the mean-field energy of
an instantaneous quadrupole in the field generated by
fluctuations in another electronic fragment. A similar
approach yields

η1 ¼ −3
α2α1ℏω

R8
ð16Þ

as the leading term of Eq. (12). Note that η1 appears to share
a similar origin with ε2; i.e., both η1 and ε2 come from the
interaction between the singly excited and the ground states
of the noninteracting oscillator pair. Similar power laws
could have also come from the first-order perturbation
correction due to V7, which, however, vanishes identically.
As expected, the cumulative effect of ε1, ε2, and η1 remains
repulsive [Fig. 1(c)] in the long range. The addition of the
London dispersion C6R−6 term does not alter the asymp-
totic repulsion. Note that the source of this repulsion is ε1,
which is proportional to the quadrupole polarizability
(linear in ℏ), unlike the case of isotropic and homogeneous
vacuum (see Fig. 7 in Ref. [33]).
It is important to note that Eð1Þ

4 , which originates from
the fourth derivative of the V int, vanishes identically in
isotropic and homogeneous vacuum, unlike the aforemen-
tioned quasi-1D case. The analogous quantity in the full-3D
case

X
α;β;γ;δ

∂4

∂rα∂rβ∂rγ∂rδ V int ð17Þ

sums over four variables α, β, γ, and δ, each of which can
have only 3 values, i.e., x, y, and z. As a result, all possible
combinations of α, β, γ, and δ in Eq. (17) contain at least
one repeated index, yielding

X
γ;δ

∂2

∂rγ∂rδ
X
α

∂2

∂rα∂rα V int: ð18Þ
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The second summation in Eq. (18) vanishes, resulting in the
dipole potential as the correct asymptotic limit in the case
of homogeneous and isotropic vacuum.
The extension of our analysis to two dimensions is

straightforward. Similar to Eq. (5), the Laplace expansion
of the Coulomb potential, followed by the power series
expansion of the Legendre polynomial, yields the even
parity terms of interoscillator interaction as

Vð2pÞ ¼ 4pq2

R2pþ1

Xp
t¼0

Xp−t
s¼0

�
2p

2t

��2ðpþtÞ−1
2

2p

��
p− t

s

�

× ½ðΔxÞ2ðp−sÞðΔyÞ2s−x2ðp−sÞ2 y2s2 −x2ðp−sÞ1 y2s1 �; ð19Þ

where Δx ¼ ðx1 − x2Þ, and Δy ¼ ðy1 − y2Þ, and p ∈ Zþ.
Aligning R with the global X direction, i.e., along the line
joining positive charges of two oscillators,

Vð4Þ ¼ Vð4Þ
x þ 3

4
Vð4Þ
y

−
3q2

2R5
½7a22b22 − 4a1b1a2b2 − a21b

2
1 − a21b

2
2 − a22b

2
1�

ð20Þ
is obtained as the fourth-order term in collective coordi-
nates a1 ¼ ð1= ffiffiffi

2
p Þðx1 þ x2Þ, a2 ¼ ð1= ffiffiffi

2
p Þðx1 − x2Þ, b1 ¼

ð1= ffiffiffi
2

p Þðy1 þ y2Þ and b2 ¼ ð1= ffiffiffi
2

p Þðy1 − y2Þ. The Y-direc-
tional component Vð4Þ

y ¼ ð ~q2=R5Þ½6y21y22 − 4ðy31y2 þ y32y1Þ�
is expressed in terms of reduced charge ~q ¼ q=

ffiffiffi
2

p
to retain

the usual form of the dipole term. The third term in Eq. (20)
is the coupling between X and Y components of the
potential. The final expression shows that the leading
contribution to the long-range energy

Eð1Þ
2D;4 ≈

3

4
ε1;y ¼

3

2

αy2ℏω

R5
ð21Þ

arises out of the cancellation between the leading orders of
the repulsive first and the attractive third term of Eq. (20).
The resulting long-range repulsive energy, similar to the 1D
example, is the mean-field energy of an instantaneous
quadrupole and varies as R−5. Curiously, the predominant
effect comes from the orthogonal component (to the
interoscillator axis, here, global X axis) of polarizability
and may have nontrivial implications, for example, for
molecules confined between layered materials [48].
Next, we extend our analysis to the quasi-3D case, which

is relevant for modeling lateral interactions between mol-
ecules adsorbed on polarizable (metallic or semiconduct-
ing) surfaces. For molecules physisorbed on surfaces, the
interaction potential follows the Poisson equation. Aligning
the global XY plane with the surface (here, we assume
perfect reflection and discuss the general case later) and X
axis with R, one realizes that the Z component of the
oscillator experiences a half-oscillator potential

VðzÞ ¼
�∞ ; z ≤ 0

mω2

2
z2 ; z > 0

: ð22Þ

The resulting oscillator state will be the product of usual
X- and Y-directional 1D oscillators and the

hzjni ¼ NnzH2nzþ1

� ffiffiffiffiffiffiffi
mω

ℏ

r
z
�
e−mωz2=2ℏΘðzÞ; ð23Þ

with Nnz ¼ ½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nzð2nz þ 1Þ!p �ðmω=πℏÞ1=4, and ΘðzÞ is

the step function, accounting for the absence of the
oscillator wave function below the metal surface. The
continuity of the wave function therefore demands a node
on the surface, forcing the solution to be the odd subset of
full quantum oscillator solutions.
Note that the long-range repulsive energies in quasi-1D

[Eq. (11)] and quasi-2D confinement [Eq. (21)] are out-
comes of first-order perturbation over dipolar-correlated
states. The same quantity for a pair of asymmetric 3D
oscillators exhibits long-range repulsion that varies as
C5=R−5, with C5 ¼ 9

4
ðq2=mω2Þðℏ=mωÞℏω, providing a

generalization of the 1D and 2D confined oscillator cases.
Using the parameters of the methane molecule and Ar atom
[33], we obtain an estimate of long-range intermolecular
lateral potential (Fig. 2). As expected, the interaction is
repulsive in the long range for both cases. Note that the
model presented here assumes ideal confinement. For
realistic surfaces, the effects of different adsorption heights,
tunneling penetration of molecular electron density through
the confining boundary, and the possibility of imperfect
reflection all need to be considered. Moreover, the inter-
action is purely attractive in the absence of confinement.
Therefore, we expect a crossover from attraction to
repulsion, depending on the polarizabilty of the adsorbate
molecule and the penetration depth of the adsorbent
electron density having observable effects on the surface
structure of the adsorbed molecules.
We would now like to examine the relevance of the

present analyses in realistic experimental situations where
long-range repulsions or a significant decrease in attractive
van der Waals interaction in the presence of confinements

FIG. 2. Repulsive interaction Erep (broken lines) and the sum of
repulsion and London attraction (Eatt) energy (solid lines) for
argon and methane dimers on a perfectly reflecting surface.
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have already been reported. To connect the presented 1D
analysis to experimental findings, we note that it has been
found that the flow rate of water through carbon nanotubes
(CNTs) increases significantly with decreasing CNT diam-
eter [49]. Classical molecular dynamics simulations [50]
and density functional calculations (see Ref. [51] for a
contemporary review) underestimate these effects by several
orders of magnitude. The repulsion presented in this Letter,
which is missing from classical force fields and density
functional approximations, would introduce an intermolecu-
lar repulsion, which may rationalize a higher flow rate with
increasing confinement. The 2D oscillator dimer example is
related to a recent experiment [52] where a previously
unknown ice structure has been discovered when water
molecules are encapsulated between two graphene sheets,
thereby suggesting peculiar intermolecular interaction
between water molecules under quasi-2D confinement. In
fact, a recent quantum Monte Carlo study [53] of stable
square ice between graphene sheets shows that most
dispersion-corrected DFT functionals overestimate the bind-
ing in the water layer. Finally, the long-range repulsion
between a quasi-3D oscillator dimer presented here may
provide an alternate interpretation of lateral repulsion
between monolayer structures of hexabenzocoronene on
Au(111), where a 90% screening of the lateral vdW
interactions by the surface was suggested previously [12].
In summary, we have solved the problem of two

oscillators coupled with a Coulomb potential under 1D,
2D, and quasi-3D confinement, utilizing a novel perturba-
tion expansion based on Ref. [33] and correlated dipolar
oscillator states. The breaking of spherical symmetry yields
a long-range repulsive interaction, suggesting that this is a
general phenomenon for confined dimers. Our findings can
be extended to systems such as atoms in optical traps,
molecules confined in nanopores, and molecules adsorbed
on polarizable surfaces. While the presented analytic results
are valid for vdW dimers, Coulomb-induced many-body
effects in many-particle systems might turn out to be even
more intricate and could be addressed by extending the
developed perturbation expansion on top of the micro-
scopic many-body dispersion Hamiltonian [30,54].
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