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Using two-photon Bragg spectroscopy, we study the energy of particlelike excitations in a strongly
interacting homogeneous Bose-Einstein condensate, and observe dramatic deviations from Bogoliubov
theory. In particular, at large scattering length a the shift of the excitation resonance from the free-particle
energy changes sign from positive to negative. For an excitation with wave number q, this sign change
occurs at a ≈ 4=ðπqÞ, in agreement with the Feynman energy relation and the static structure factor
expressed in terms of the two-body contact. For a≳ 3=q we also see a breakdown of this theory, and better
agreement with calculations based on the Wilson operator product expansion. Neither theory explains our
observations across all interaction regimes, inviting further theoretical efforts.
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Spectroscopy of elementary excitations in a many-body
system is one of the primary methods for probing the
effects of interactions and correlations in the ground state of
the system, which are at the heart of macroscopic phenom-
ena such as superfluidity [1,2]. In ultracold atomic gases,
two-photon Bragg spectroscopy provides a measurement of
the excitation energy ℏω at a well-defined wave number q
[3–9]. For a weakly interacting homogeneous Bose-
Einstein condensate (BEC), the excitation spectrum is
given by the Bogoliubov dispersion relation [10], with
low-q phonon excitations and high-q particlelike excita-
tions. Predictions of the Bogoliubov theory have been
experimentally verified both in harmonically trapped gases,
invoking the local density approximation [4,5], and in
homogeneous atomic BECs [9].
Much richer physics, including phenomena traditionally

associated with superfluid liquid helium, such as the roton
minimum in the excitation spectrum [11], is expected in
strongly interacting atomic BECs (for a recent review see
[12]). The strength of two-body interactions, characterized
by the s-wave scattering length a, can be enhanced by
exploiting magnetic Feshbach resonances [13]. However,
this also enhances three-body inelastic collisions, making the
experiments on strongly interacting bulk BECs [6,14–16]
challenging and still scarce [17]. A deviation from the
Bogoliubov spectrum was observed in Bragg spectroscopy
of large-q excitations in a harmonically trapped 85Rb BEC
[6], and has inspired various theoretical interpretations
[6,12,18–22], with no consensus or complete quantitative
agreement with the experiments being reached so far.
In this Letter, we use Bragg spectroscopy to study the

large-q, particlelike excitations in a strongly interacting
homogeneous 39K BEC, produced in an optical box trap
[23]. Our homogeneous system allows more direct com-
parisons with theory, and we also explore stronger inter-
actions than in previous experiments. We show that at large
a the excitation-energy shift from the free-particle

dispersion relation strongly deviates from the
Bogoliubov theory and even changes sign from positive
to negative. For a≲ 3=q our measurements are in excellent
agreement with the calculation based on the Feynman
energy relation, with a static structure factor that accounts
for short-range two-particle correlations. However, for even
stronger interactions we also observe a breakdown of this
approximation, and find better agreement with a recent
prediction [22] based on the Wilson operator product
expansion.
In Bogoliubov theory, the excitation energy ℏω is

given by

ω ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

q2ξ2

s
; ð1Þ

where ω0 ¼ ℏq2=ð2mÞ is the free-particle dispersion rela-
tion, m the atom mass, ξ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
8πna

p
the healing length,

and n the BEC density. For particlelike excitations, with
q ≫ 1=ξ, the Bogoliubov prediction for the interaction shift
Δω ¼ ω − ω0 is ΔωB ¼ 4πℏna=m [see Fig. 1(a)]. This

(a) (b)

FIG. 1. Predictions for the excitation resonances. (a) Interaction
shift for particlelike excitations with a fixed wave number q. The
dashed and solid lines show the Bogoliubov and Feynman-Tan
predictions, respectively. (b) Sketches of the dispersion relations
for two different scattering lengths (solid lines, with a2 > a1),
following [24]. The dotted line shows the free-particle dispersion
relation.
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theory assumes
ffiffiffiffiffiffiffiffi
na3

p
≪ 1. Moreover, it is valid only for

q ≪ 1=a, because it does not consider the short-range two-
particle correlations, at distances r≲ a.
For

ffiffiffiffiffiffiffiffi
na3

p
≪ 1, the Feynman energy relation gives the

excitation resonance at ω ¼ ω0=SðqÞ, where SðqÞ is the
static structure factor. Considering short-range correlations,
for qξ ≫ 1:

SðqÞ ¼ 1þ C
8n

�
1

q
−

4

πaq2

�
; ð2Þ

where Cðn; aÞ is the two-body contact density, and the
expression in parentheses reflects the two-body correlations
at short distances [22,25]; this “factorization” of the effects
of many-body correlations (captured by C) and the short-
distance two-body physics was highlighted by Tan [26].
For

ffiffiffiffiffiffiffiffi
na3

p
≪ 1, the contact density is C ≈ ð4πnaÞ2,

and for our experimental parameters jSðqÞ − 1j < 0.03,
so 1=SðqÞ − 1 ≈ 1 − SðqÞ. This “Feynman-Tan” (FT)
approach thus gives the interaction shift of the excitation
resonance

ΔωFT ¼ 4πℏna
m

�
1 −

πqa
4

�
: ð3Þ

For qa → 0, ΔωFT reduces to ΔωB, but for increasing a (at
fixed q) it backbends and changes sign at a ¼ 4=ðπqÞ [see
Fig. 1(a)]. In Ref. [6] the largest value of a reached was
0.8=q and backbending was observed, but Δω remained
positive.
Let us also consider the dispersion relation ωðqÞ at fixed

a. The energy of the low-q phonons is above the free-
particle dispersion (Δω > 0) [24,27], while according to
Eq. (3) the energy of particlelike excitations with q >
4=ðπaÞ is below it (Δω < 0); finally, for q → ∞ the
quasiparticle energy is expected to approach the free-
particle dispersion from below (Δω → 0−) [22,24]. As
illustrated in Fig. 1(b), for a large enough a the dispersion
relation has an inflection point, which is a precursor of the
roton minimum that fully develops only for extremely
strong interactions [22,24]. In Eq. (2) the maximum in SðqÞ
for fixed n and a, which is conceptually associated with the
roton [22,28], occurs at q ¼ 8=ðπaÞ, independently of n,
and only for

ffiffiffiffiffiffiffiffi
na3

p
∼ 1 this coincides with the familiar

result for liquid helium, qroton ∼ n1=3.
In our experiments the regime

ffiffiffiffiffiffiffiffi
na3

p
∼ 1 is not reachable

due to significant losses on the time scale necessary to
perform high-resolution Bragg spectroscopy. Nevertheless,
we reach the regime where interactions are strong enough
to observe a dramatic departure from Bogoliubov theory
and the precursors of roton physics.
Our setup is described in Ref. [29]. We produce

quasipure homogeneous 39K BECs of N ¼ ð50 − 160Þ ×
103 atoms in a cylindrical optical box trap of variable
radius, R ¼ ð15–30Þ μm, and length, L ¼ ð30–50Þ μm.

The BEC is produced in the lowest hyperfine state, which
features a Feshbach resonance centered at 402.70(3) G
[30]. The condensed fraction in our clouds is > 90% and
we hold them in a trap of depth ≈ kB × 20 nK. By varying
N, L, and R, we vary n in the range ð0.2–2.0Þ × 1012 cm−3.
The three-body loss rate is ∝ n2a4, so working at such low
n is favorable for increasing both qa and

ffiffiffiffiffiffiffiffi
na3

p
. We prepare

the BEC at a ¼ 200a0, where a0 is the Bohr radius, and
then ramp a in 50 ms to the value at which we perform the
Bragg spectroscopy. For each n we limit a to values for
which the particle loss during the whole experiment is
< 10%; note that in our trap the three-body recombination
does not lead to any observable heating. By varying the
angle between the Bragg laser beams we also explore three
different q values: 1.1, 1.7 and 2.0 krec, where krec ¼ 2π=λ
and λ ¼ 767 nm. For all our parameters we stay in the
regime of particlelike excitations, with qξ values between 5
and 40.
In Fig. 2(a) we show an example of an absorption image

taken after Bragg diffraction, and in Fig. 2(b) an example of
a Bragg spectrum used to determine the resonance shift
Δω. The diffracted fraction of atoms is determined from the
center of mass of the atomic distribution [6,8]. In all our
measurements we keep the maximal diffracted fraction to
≲10%; this should result in ≲10% systematic errors in our
interaction frequency shifts [5,31].
In Fig. 3(a) we plot Δω versus a for two different

combinations of the BEC density n and excitation wave
number q. In both cases we observe good agreement with
the prediction of Eq. (3), without any adjustable parame-
ters; for the lower n we reach higher a and clearly observe
that Δω changes sign.

(a) (b)

FIG. 2. Bragg spectroscopy, for n ≈ 2.0 × 1012 cm−3,
q ¼ 1.7krec, and a ≈ 1000a0. (a) Typical absorption image, taken
along the radial direction of the cylindrical box trap, after the
2-ms Bragg pulse and 20 ms of time of flight. The spherical halo
arises from the collisions between the stationary and diffracted
clouds; these collisions do not change the center of mass of the
atomic distribution. (b) Bragg spectrum. Diffracted fraction (DF)
as a function of the frequency difference between the two Bragg
beams, referenced to ω0, which was calibrated using a non-
interacting cloud. The resonance is determined from a Gaussian
fit to the data (solid line).
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Defining a dimensionless interaction frequency shift

α≡ mq
4πℏn

Δω; ð4Þ

the FT prediction of Eq. (3) is recast as

αFT ¼ qa

�
1 −

π

4
qa

�
; ð5Þ

which is a universal function of qa only; with the same
normalization the Bogoliubov theory gives αB ¼ qa. Note
that the normalization in Eq. (4) also allows us to correct for
the small (�10%) density variations between measure-
ments taken with different values of a and the same
nominal n. In Fig. 3(b) we show measurements of α with
three different combinations of n and q, which all fall onto
the same universal curve, in good agreement with the FT
theory.

In Fig. 3(b), for our most strongly interacting samples
qa ≈ 2.5 and

ffiffiffiffiffiffiffiffi
na3

p
≈ 0.05. In the final part of the paper we

explore even stronger interactions and observe that the FT
theory also breaks down. In Fig. 4(a) we show measure-
ments of Δω with n ≈ 0.2 × 1012 cm−3 and q ¼ 2krec, for
which we explore scattering lengths up to ≈ 8 × 103a0,
corresponding to qa ≈ 7 and

ffiffiffiffiffiffiffiffi
na3

p
≈ 0.1. Here we observe

a clear deviation from the FT prediction.
Tuning a at fixed n and q simultaneously changes qa andffiffiffiffiffiffiffiffi
na3

p
, making it nonobvious which of the two dimension-

less interaction parameters is (primarily) responsible for the
breakdown of the FT theory. In an attempt to disentangle
the two effects, we collect data with many fn; q; ag
combinations, and group them into sets with (approxi-
mately) equal

ffiffiffiffiffiffiffiffi
na3

p
, but varying qa values. In Fig. 4(b) we

plot α − αFT versus qa, with different symbols correspond-
ing to different

ffiffiffiffiffiffiffiffi
na3

p
. These measurements suggest that, at

least for our range of parameters, the breakdown of the FT
theory occurs for qa≳ 3, independently of the value
of

ffiffiffiffiffiffiffiffi
na3

p
.

(a)

(b)

FIG. 3. Breakdown of the Bogoliubov approximation and
observation of negative frequency shifts. (a) Δω as a function
of a for n ≈ 2.0 × 1012 cm−3 and q ¼ 1.1krec (blue circles), and
for n ≈ 0.8 × 1012 cm−3 and q ¼ 2krec (orange diamonds). (b) Di-
mensionless frequency shift α versus qa for three different
combinations of n and q. Solid lines in (a) and (b) show the
FT predictions from Eqs. (3) and (5), respectively, with no
adjustable parameters. The dashed lines show the corresponding
Bogoliubov predictions. Vertical error bars show statistical fitting
errors and horizontal error bars reflect the uncertainty in the
position of the Feshbach resonance.

(a)

(b)

FIG. 4. Deviation from the Feynman-Tan prediction. (a) Fre-
quency shift versus a for n ≈ 0.2 × 1012 cm−3 and q ¼ 2krec. The
solid line shows the FT prediction. (b) Deviation of the
dimensionless frequency shift α from the FT theory as a function
of qa, for various values of

ffiffiffiffiffiffiffiffi
na3

p
(see the legend). The dashed

line is the OPE prediction with C ¼ ð4πnaÞ2 and no adjustable
parameters. The dot-dashed line is the OPE prediction that also
includes the LHY correction with

ffiffiffiffiffiffiffiffi
na3

p
¼ 0.093, corresponding

to the open-circles data. Inset: comparison of the FT (solid) and
OPE (dashed) calculations with the data at low qa.
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At qa≳ 3, the deviation of our data from the FT theory is
captured well by a recent calculation based on the Wilson
operator product expansion (OPE) [22]. Assuming
C ¼ ð4πnaÞ2, and with the same normalization as in
Eq. (4), αOPE ¼ qa½2=ð1þ ðqa=2Þ2Þ − 1� (see also [27]);
in Fig. 4(b) the dashed black line shows αOPE − αFT.
This theory also allows for self-consistent inclusion of

beyond-mean-field corrections to C. Including the Lee-
Huang-Yang (LHY) correction [32–34], αOPE depends on
both qa and

ffiffiffiffiffiffiffiffi
na3

p
; we show the LHY-corrected αOPE (dot-

dashed black line) only for our largest
ffiffiffiffiffiffiffiffi
na3

p
, where it

appears to provide a slightly better agreement with the
experiments, but this observation is not conclusive (see also
[15]). Note that at this point the LHY correction to C is
about a factor of two, but beyond-LHY corrections, which
additionally depend on the van der Waals length, could also
be significant and the two effects could partially can-
cel [35,36].
Finally, we note that while the OPE theory successfully

describes our large-qa measurements, it does not agree
with our low-qa data, in particular because it predicts the
zero crossing of Δω at qa ¼ 2 instead of qa ¼ 4=π; this is
highlighted in the inset of Fig. 4(b).
In conclusion, we have probed the quasiparticle excita-

tions in a strongly interacting homogeneous BEC, pushing
the experiments far beyond the regime of validity of the
Bogoliubov theory. For a range of interaction strengths,
qa≲ 3, our data can still be quantitatively explained in the
framework of the Feynman energy relation, by taking into
account the short-range two-particle correlations in the
spirit introduced by Tan. For qa≳ 3 this theory also fails,
pointing to the need for more sophisticated theoretical
approaches. One such approach, based on the Wilson
operator product expansion, indeed accounts well for our
observations at qa≳ 3, but not at qa≲ 3. Providing a
unified description of quasiparticle resonances in all
interaction regimes thus remains a theoretical challenge.
Data supporting this publication are available for down-

load at [37].
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