
Symmetry-Enforced Line Nodes in Unconventional Superconductors

T. Micklitz1 and M. R. Norman2
1Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

2Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
(Received 22 November 2016; published 18 May 2017)

We classify line nodes in superconductors with strong spin-orbit interactions and time-reversal
symmetry, where the latter may include nonprimitive translations in the magnetic Brillouin zone to
account for coexistence with antiferromagnetic order. We find four possible combinations of irreducible
representations of the order parameter on high-symmetry planes, two of which allow for line nodes in
pseudospin-triplet pairs and two that exclude conventional fully gapped pseudospin-singlet pairs. We show
that the former can only be realized in the presence of band-sticking degeneracies, and we verify their
topological stability using arguments based on Clifford algebra extensions. Our classification exhausts all
possible symmetry protected line nodes in the presence of spin-orbit coupling and a (generalized) time-
reversal symmetry. Implications for existing nonsymmorphic and antiferromagnetic superconductors are
discussed.
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Introduction.—The possibility of line-nodal odd-parity
superconductivity in the presence of spin-orbit interactions
has attracted recent attention [1–4]. Blount [5] has argued
that odd-parity superconductivity should be free of nodal
lines. Indeed, the vanishing of all three pseudospin triplet
components is improbable for general points in the
Brillouin zone, and line nodes may occur only on high-
symmetry planes intersecting the Fermi surface. The
pseudospin components of the odd-parity wave function
form, however, an axial vector, and in symmorphic lattices
its components parallel and perpendicular to the symmetry
plane transform according to different representations. This
excludes a symmetry-enforced vanishing of all three
pseudospin components on the entire symmetry plane
and allows for only point nodes.
The situation changes in the presence of nonsymmorphic

space group symmetries. Nontrivial phase factors due to
nonprimitive translations can conspire in a way to exclude
representations on high-symmetry planes and open the
possibility of nodal-line odd-parity superconductors [6,7].
A similar situation arises in superconducting materials
coexisting with antiferromagnetic (AFM) order, where
time-reversal symmetry exists only in conjunction with
nonprimitive translations in the magnetic zone. In recent
work, Nomoto and Ikeda [4] studied one example of
coexisting order which does not allow for nodal-line
odd-parity superconductivity but also excludes conven-
tional, fully gapped even-parity order parameters. A sys-
tematic understanding of the symmetry constraints which
may lead to unconventional nodal properties is, however,
missing. This calls for a general classification of nodal-line
superconductors in the presence of spin orbit that takes into
account general nonsymmorphic crystal structures and
coexistence with antiferromagnetic order.

Here, we give a full classification of possible represen-
tations on high-symmetry planes under such general con-
ditions. There are four combinations of irreducible
representations of the superconducting order parameter:
(1) symmorphic (cases that obey Blount’s theorem),
(2) nonsymmorphic in space (allowing for odd-parity line
nodes), (3) nonsymmorphic in both space and time
(allowing for even-parity line nodes in antiferromagnets),
and (4) nonsymmorphic in time (allowing for odd-parity
and even-parity line nodes). That is, two of them allow for
line nodes in odd-parity superconductors and two exclude
conventional fully gapped even-parity pairing. The most
interesting scenario, with exotic behavior in even- and odd-
parity components protected by a mirror or glide-plane
symmetry, appears in coexistence with the antiferromag-
netic order and has not been discussed previously. We
derive the conditions under which each of the representa-
tions apply, verify topological stability of the line nodes,
and discuss implications for existing materials.
Symmetries.—In systems with time-reversal (θ) and

inversion (I) symmetries, Kramer’s degeneracy of
single-particle states survives the presence of spin-orbit
interaction. The notion of spin-singlet and spin-triplet
superconductivity then generalizes to corresponding pseu-
dospin pairs formed out of the degenerate states ψ , θIψ , Iψ ,
and θψ [8]. Pseudospin-singlet and -triplet pairs correspond
to the even- and odd-parity combinations, respectively [9].
On high-symmetry points in the Brillouin zone, even- and
odd-parity pairs can be further characterized according to
their transformation behavior under additional crystal
symmetries. Line nodes may be symmetry enforced on
high-symmetry planes intersecting the Fermi surface. For a
classification of nodal-line superconductors, it therefore
suffices to concentrate on mirror symmetries σz, which
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may, however, be realized in combination with nonprimi-
tive translations,

Σ0
z ≡ ðσz; t0σÞ; t0σ ¼

8<
:

0 ðmirror planeÞ
t⊥ ðmirror plane�Þ
t∥ ðglide planeÞ

ð1Þ

Throughout this Letter, we denote space group elements by
ðg; tÞ, with g being a point group operation and t a possible
nonprimitive translation, and we set the lattice constants to
unity. Equation (1) is a mirror reflection for a vanishing
translation vector. In centrosymmetric crystals, a nonpri-
mitive translation perpendicular to the symmetry plane,
t⊥ ≡ ez=2, implies the presence of a twofold screw axis
IΣ0

z. Despite its nonprimitive translation, Σ0
z is a symmor-

phic operation, as the translation can be removed by
redefinition of the origin. Therefore, we refer to this
symmetry as mirror� in the following. For a nonprimitive
translation t∥ within the symmetry plane, Eq. (1) is a
(nonsymmorphic) glide-plane operation. The absence of
some of the possible representations for the order para-
meter on the basal plane (kz ¼ 0) and/or the Brillouin zone
face (kz ¼ π) then opens the possibility of nodal-line
superconductivity.
Magnetism generally lifts the Kramer’s degeneracy of

single-particle states. In the presence of antiferromagnetic
order, a generalized time-reversal symmetry operation is
preserved which contains a nonprimitive translation in the
magnetic Brillouin zone. Lattice symmetries may be
affected in a similar fashion, and to account for these
effects we introduce the generalized symmetries

Θ≡ ðE; tθÞθ; I ≡ ðI; tiÞ; Σz ≡ ðσz; tσÞ: ð2Þ

Here, E is the identity element of the point group, tθ the
nonprimitive magnetic translation which vanishes in the
paramagnetic phase, and ti ¼ 0 or tθ, while tσ ¼ t0σ or
t0σ þ tθ. We next aim to identify the allowed order
parameter representations on symmetry planes kz ¼ 0, π,
taking into account the constraints set by symmetries (2).
The latter are derived from antisymmetrized products of the
irreducible single-particle representations [10–13], as we
discuss next.
Pair representations.—Starting from representations Γk

of the “little” group of the symmetry planes,Gk ¼ fE;Σzg,
one can construct representations for the symmetry
group of Cooper pairs. The latter reads Gk∪IGk ¼
fE;Σz; I ; IΣzg, where, for notational convenience, we
introduced E ≡ ðE; 0Þ. Cooper pairs are constructed from
antisymmetrized products of the single-particle wave func-
tions with vanishing total momentum. For pair representa-
tions, one thus has to separate out the antisymmetric parts
P− of the corresponding (Kronecker) products of single-
particle representations. P− are deduced from their char-
acters, which can be calculated from characters of the

single-particle representations [10,11]. Applying the gen-
eral recipe to our case, we are left with [12,13]

χ(P−ðmÞ) ¼ χ(ΓkðmÞ)χ(ΓkðImIÞ); ð3Þ

χ(P−ðImÞ) ¼ −χ(ΓkðImImÞ); ð4Þ

where m ∈ Gk and the left-hand side defines the characters
of P− for the symmetry group of Cooper pairs. For our
purposes, the single-particle representations Γk are double-
valued corepresentations of the magnetic group Gk ¼ Gk þ
ΘIGk which take into account spin-orbit coupling and
degeneracies due to a (generalized) time-reversal sym-
metry. Following this procedure, we find four possible
representations realized on the symmetry planes. These are
summarized in Table I (top), where the values for ρ and cd
depend on the translations tθ, ti, tσ. We note that the first
and third characters in the table formalize that centrosym-
metric crystals with (generalized) time-reversal symmetry
host four different pairs, one of which is even and three of
which are odd parity [14]. A short calculation further shows
[15] that ρ ¼ e2ikzez·ðtσ−tiÞ ¼ �1 fixes the sign of the last
character. In the following, we refer to the two resulting
representations asΠ�. We notice thatΠ−, e.g., describes for
vanishing ti the Brillouin zone face of a mirror� symmetry.
On the basal plane, on the other hand, Πþ always applies.
Finally, the second character in Table I fixes the mirror
eigenvalues of the induced representations. For reasons
discussed below, we refer to cases cd ¼ 0, 1 as Kramer’s
and band-sticking degeneracies, respectively. If cd ¼ 1, all
four pairs share the same mirror eigenvalue, while cd ¼ 0
implies that two out of the four pairs have opposite
mirror eigenvalues. To determine the conditions under
which either of the two values cd applies, one needs to
specify the single-particle corepresentations Γk. Before
doing so, we first comment on implications of the four
representations.

TABLE I. (Top) Character table for representations P− of
antisymmetrized Kronecker deltas induced by single-particle
representations. Here, cd ¼ 0, 1 corresponds to a Kramer’s (0)
and band-sticking (1) degeneracy on the symmetry plane.
(Bottom) Character table for irreducible representations of the
Cooper-pair wave function on high-symmetry planes.

ρ E Σz I ΣzI

þ 4 −4cd −2 2
− 4 4cd −2 −2

E Σz I ΣzI

Ag 1 1 1 1
Au 1 −1 −1 1
Bg 1 −1 1 −1
Bu 1 1 −1 −1
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Decomposing into their irreducible components (Table I,
bottom), one arrives at Table II, which is a central result.
The four representations in this table give an exhaustive
classification of nodal-line superconductors in the presence
of spin orbit, and (generalized) time-reversal, inversion, and
mirror symmetries (2). Blount’s theorem on the absence of
nodal-line odd-parity pairing holds whenever the Cooper
pair belongs to one of the two Kramer’s degenerate
representations cd ¼ 0, but it may be violated in the two
cases of band sticking cd ¼ 1. Moreover, out of the two
representations belonging to each type of degeneracy, one
excludes conventional singlet pairing with a fully gapped
order parameter from Ag.
Kramer’s degeneracies and band sticking.—The second

character in Table I (top) can be expressed in terms of
the single-particle corepresentation [15] χ(P−ðΣzÞ) ¼
e−ik·ð2tσþσzti−tiÞχ2(ΓkðΣzÞ), and to specify Γk one needs
to account for degeneracies induced by Θ. The latter are
detected by Herring’s criterion, and for centrosymmetric
crystals with (generalized) time-reversal symmetry, one
either encounters Kramer’s or band-sticking degeneracies
[15–17]. In the absence of spin orbit, the latter occur for
each spin component, and it is this fourfold degeneracy that
the name alludes to [11,17,18]. Both types of degeneracies
are accounted for by passing from double-valued
representations γk of the little group to corresponding
corepresentations of the magnetic group Gk. That is,

γk ↦ Γk ≡
� γk

γ̄k

�
, where γ̄kðmÞ ¼ γ�k(ðIθÞ−1mIθ)

for Kramer’s and γ̄kðmÞ ¼ γkðmÞ for band-sticking
degeneracies [19]. One readily verifies that corepresenta-
tions of the former come in pairs of opposite sign, i.e.,
χ(ΓkðΣzÞ) ¼ 0, independent of translations tθ,ti,tσ .
Representations of band-sticking degeneracies, on the
other hand, come in identical pairs, i.e., χ(ΓkðΣzÞ) ¼
�2ieik·ðtσþσztσÞ=2 and χ(P−ðΣzÞ) ¼ −4ρ, as summarized
in Table I [15]. Finally, inspection of Herring’s criterion
gives cd as a function of the translations. For the conven-
ience of the reader, we here summarize the two equations
fixing the representations Πρ

cd [15],

ð−1Þcd ¼ e2ikzez·ðtθþtσ−tiÞ; ð5Þ
ρ ¼ e2ikzez·ðtσ−tiÞ: ð6Þ

Equations (5) and (6) are a central result and allow us to
identify the pair representation from the translation vectors
defining the basic symmetries Eq. (2). Band sticking occurs
for vanishing ti on the Brillouin zone face of a mirror�
symmetry in the absence of magnetic order, or a mirror
symmetry with coexistent antiferromagnetic order tθ ¼ t⊥.
We also notice that glide and mirror symmetries have
identical implications for the nodal structure. We also
verified [15] the topological stability of the encountered
line nodes using a Clifford algebra technique [3]. There, we
show that topological protection arises under the conditions
of Eq. (5), which indicate band sticking and allow us to
extend our results to more general conditions such as the
pairing of nondegenerate states in multiband systems.
Applications.—Our results are summarized in Table III.

On the basal plane, the absence of nontrivial phase factors
associated with nonprimitive translations implies symmor-
phic behavior of representation Πþ

0 (the first entry in
Table III). The latter is characterized by the validity of
Blount’s theorem, i.e., the absence of odd-parity nodal-line
superconductors and the possibility of conventional fully
gapped singlet pairing. Interesting behavior can be expected
on the Brillouin zone face where, depending on the
symmetries encoded in the translations tθ, ti, tσ, all four
cases can be realized. The second entry in Table III,
representation Π−

1 , has previously been discussed in
Refs. [6,7] and is here generalized to include glide-plane
symmetries [20] and coexistence with the antiferromagnetic
order. A scenario summarized by representation Π−

0 , the
third entry in the table, was recently studied by Nomoto and
Ikeda [4]. Finally, representation Πþ

1 , given in the fourth
entry, has, to our knowledge, not been discussed before.
Table IV lists a number of nonsymmorphic and anti-

ferromagnetic superconductors with their space group
symmetry, nonsymmorphic group operations (GO), the

TABLE II. Decompositions of Cooper-pair representations
(Πρ

cd ) into irreducible components summarized in Table I
(bottom). Here, Kramer’s degeneracy and band sticking refer
to cd ¼ 0 and cd ¼ 1, respectively.

ρ Kramer’s deg.

þ Ag þ 2Au þ Bu
− Bg þ Au þ 2Bu

ρ Band sticking

þ Bg þ 3Au
− Ag þ 3Bu

TABLE III. Summary of results where T ¼ f0; t∥g refers to
translation vectors within the mirror plane and t⊥ to a non-
vanishing perpendicular component. Here, “symmorphic behav-
ior” refers to the absence of line nodes in odd-parity
superconductors (Blount’s theorem) and the possibility of con-
ventional fully gapped singlet pairing, and “nodal even-parity
SC” to the impossibility of the latter. Entry 2 is realized for UPt3,
NaxCoO2, Li2Pt3B, and CrAs, entry 3 for UPd2Al3 and UNi2Al3,
and entry 4 for UPt3 in the AFM phase.

tθjðtσ − tiÞ Pair representation Implications

TjT Πþ
0 ¼ Ag þ 2Au þ Bu Symmorphic behavior

Tjt⊥ Π−
1 ¼ Ag þ 3Bu Odd-parity line nodes

t⊥jt⊥ Π−
0 ¼ Bg þ Au þ 2Bu Nodal even-parity SC

t⊥jT Πþ
1 ¼ Bg þ 3Au Odd-parity line nodes

and nodal even-parity SC
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experimentally indicated nodal structure (Node) and pair
representation (Rep) obtained from our analysis. As we
discuss next, for several of these examples, the observed
nonsymmorphic behavior is in agreement with the indi-
cated pair representations [15].
As pointed out in several recent works [1,2,6,7], the pair

representationΠ−
1 may be realized in UPt3, where the Fermi

surface intersects the symmetry plane kz ¼ π of a mirror�
symmetry Σz ¼ ðσz; ez=2Þ. As discussed in Ref. [15], the
same may occur for NaxCoO2, Li2Pt3B, and CrAs. This is
readily verified from Eqs. (5) and (6), noting that tθ, ti ¼ 0
and tσ ¼ ez=2. Our above analysis further shows that the
resulting Au line node for UPt3 also persists in the presence
of weak antiferromagnetic order along the hexagonal a
axis, tθ ¼ ta ¼ ð ffiffiffi

3
p

ex − eyÞ=2 [21]. Indeed, translation
vectors defining pair symmetries on the Brillouin zone
face kz ¼ π are tσ ¼ tz þ ta and ti ¼ ta [22,23]. Inserting
these vectors into Eqs. (5) and (6), one readily verifies that
the representation Π−

1 also applies in the presence of the
antiferromagnetic order. Moreover, symmetry planes Σx ¼
ðσx; tz þ taÞ and Σy ¼ ðσy; taÞ lead to interesting behavior
on the AFM Brillouin zone faces kx ¼ π=

ffiffiffi
3

p
and ky ¼ π.

With tθ ¼ ti ¼ ta and tσ ¼ tz þ ta (tσ ¼ ta), one identi-
fies, with the help of Eqs. (5) and (6) and by replacing kz by
kx (ky), the pair representation Πþ

1 on both zone faces.
Since Fermi surfaces intersect both of these zone faces, this
opens up the possibility for Bu line nodes for AFM UPt3
and also implies the absence of conventional fully gapped
even-parity pairing.
UPd2Al3 provides a further interesting example, as

recently discussed in Ref. [4]. The Fermi surface intersects
the symmetry plane kz ¼ π of a mirror σz symmetry. For
antiferromagnetic order along the c axis and orientation of
the moments within the basal plane, the translations are
tθ ¼ ez=2, tσ ¼ ez=2 and ti ¼ 0. From Eqs. (5) and (6),

one readily finds the pair representation Π−
0 , implying the

absence of conventional fully gapped s-wave supercon-
ductivity and consistency with Blount’s theorem [4]. For
magnetic moments oriented along the c axis, on the other
hand, tσ ¼ 0, while the other translations are unchanged. A
brief glance at Eqs. (5) and (6) then shows that the pair
representation on the Brillouin zone face is Πþ

1 in this case.
The latter allows for odd-parity line nodes, while the
conclusion on the absence of conventional fully gapped
s-wave superconductivity is unaltered. The same consid-
erations apply for UNi2Al3 for the c-axis zone face, since
the AFM wave vector along c is the same as UPd2Al3.
Summary and discussion.—We have studied Cooper-pair

representations for superconductors with spin-orbit and
magnetic order. We have shown that, on high-symmetry
planes, there exist four possible representations. Two of
these provide counterexamples to Blount’s theorem,
allowing for nodal-line odd-parity superconductivity, and
two exclude conventional fully gapped even-parity pairing.
The Au line node has been previously discussed [6,7], and
the Bu line node has, to our knowledge, not been studied
before. The latter can be readily understood by noting that
the degenerate states forming pseudospin pairs, ψ , θIψ , Iψ ,
and θψ , all have the same mirror eigenvalue [24]. We have
provided simple formulas which allow us to identify the
pair representation from the translation vectors tθ,ti,tσ of
the (generalized) symmetries Eq. (2). We have illustrated
how a straightforward application of the results gives
interesting insights into the unconventional nodal structure
of superconductors UPt3 and UPd2Al3 (with other exam-
ples shown in Table IV that are discussed more in
Ref. [15]). Given the simplicity of Eqs. (5) and (6), we
hope that they will prove useful in our understanding of
known and yet to be discovered unconventional super-
conductors. Finally, we have verified topological stability
of the encountered line nodes of odd-parity superconduc-
tors. Owing to band degeneracies along symmetry lines on
the zone face in the nonsymmorphic case, these nodes can
form nodal loops [1,2,20], which implies a topological
phase transition once the ratio of the superconducting gap
to the spin-orbit splitting of the bands exceeds a critical
value. Consequences for possible topological surface states
is an interesting question open for future investigation.
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