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We derive a number of exact relations between response functions of holomorphic, chiral fractional
quantum Hall states and their particle-hole (PH) conjugates. These exact relations allow one to calculate the
Hall conductivity, Hall viscosity, various Berry phases, and the static structure factor of PH conjugate states
from the corresponding properties of the original states. These relations establish a precise duality between
chiral quantum Hall states and their PH conjugates. The key ingredient in the proof of the relations is a
generalizationofGirvin’s construction ofPH-conjugate states to inhomogeneousmagnetic field and curvature.
Finally,wemake several nontrivial checks of the relations, including for the Jain states and their PHconjugates.
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Introduction.—Particle-hole (PH) transformation for
fractional quantum Hall (FQH) states was introduced by
Girvin [1]. This transformation relates a FQH state at filling
fraction ν to a FQH state at filling fraction 1 − ν. In the
absence of Landau level mixing the projected lowest
Landau level (LLL) Hamiltonian is PH symmetric and,
therefore, two states related by a PH transformation have the
same energy (up to a shift in the chemical potential). Despite
the physical clarity of PH symmetry, the PH-transformed
wave functions look quite complicated and are difficult to
work with. PH-transformed states contain a different num-
ber of particles and have different transport properties
and different topological order. In this Letter wewill explain
that all of the information about a PH-transformed state is
encoded in the original state, so that both states are a
different representations for essentially the same physics.
For this reason we feel it is more appropriate to refer to the
PH transformation as a particle-hole duality (PHD).
Recent years have also brought the rise of interest in the

role of PHD in the problem of the half-filled Landau level.
To resolve the issue of the apparent absence of the PH
invariance in the Halperin-Lee-Read [2] theory, Son has
proposed a manifestly PH-invariant effective theory of
composite fermions with π Berry phase around the
composite Fermi surface [3]. This theory can successfully
be used to describe Jain states at fillings close to ν ¼ 1=2
and a PH-invariant (or self-dual) version of the Pfaffian
state [3,4], which is a viable candidate for the observed
ν ¼ 5=2 plateau [5].
PH transformation, as defined by Girvin [1], works in

flat space and homogeneous magnetic field. It was recently
appreciated that placing a FQH state in an inhomogeneous
background magnetic field and curved geometry allows one
to extract considerable information about the flat space
properties of the state [6–26]. For example, the projected
static structure factor (SSF) [27] in leading and subleading
order in momentum, and long-wave corrections to Hall

conductivity and Hall viscosity can be calculated from
the properties that become apparent in curved space
[11,19,28–30]. Integer quantum Hall states in curved
geometry are available in (synthetic) photonic systems [31].
In this Letter, we will use the approach of [9,19] to

extend Girvin’s construction to inhomogeneous magnetic
field and curved geometry. Next, we will derive several
exact relations between Hall conductivity, Hall viscosity,
Berry phases, and the SSF of the holomorphic, chiral FQH
states and their PH duals. These relations establish the
PHD quantitatively and show that properties of the PH-
dual state are completely determined by the original state.
The duality is nontrivial since the calculations can be easily
done before the PH transformation but are difficult to
do after.
Under certain assumptions, the long-wave corrections to

Hall conductivity, Hall viscosity, and the SSF are deter-
mined by topological quantum numbers [11,19,20,28,29]:
filling fraction ν, shift S ¼ 2s̄ [6], chiral central charge c−
[32], and the orbital spin variance varðsÞ [14,16]. We will
explain how the topological quantum numbers transform
under the PHD and prove that the aforementioned long-
wave corrections are still determined by the (transformed)
topological quantum numbers, albeit via different relations.
We will check the derived relations against the explicit
computation of the corresponding quantities for Jain states
done in Son’s theory of composite fermions and find
complete agreement.
FQH states in inhomogeneous background.—We start

with a brief review of the construction [9,19,20] of a LLL
FQH state in inhomogeneous magnetic field and curvature.
Consider a holomorphic FQH state ΨνðfξgÞ, where fξg ¼
ξ1;…; ξN denotes the collection of particle positions on the
plane in complex coordinates ξ ¼ xþ iy. We will assume
that the magnetic field B is inhomogeneous and the
background geometry is curved. Then the unnormalized
wave function ΨνðfξgÞ takes the following form [9,19]:
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ΨνðfξgÞ ¼ fνðfξgÞe
1
2

P
N
i¼1

Qðξi;ξ̄iÞ; ð1Þ
where fνðfξgÞ is holomorphic in ξi, and Q is the magnetic
potential [33] defined by

ΔgQ ¼ −2B; ð2Þ
where Δg is the Laplace operator for the metric gij.
Throughout the Letter we will fix the coordinates so that
gij ¼ ffiffiffi

g
p

δij. In these coordinates (also known as the
“conformal gauge”) the Laplacian is given by Δg ¼
ð4= ffiffiffi

g
p Þ∂z∂ z̄,. When the magnetic field is homogeneous,

but the space is curved, the magnetic potential is given by

Q ¼ −
K
2l2

; ð3Þ

where K is the Kähler potential satisfying ∂z∂ z̄K ¼ ffiffiffi
g

p
,

and l ¼ B−1=2 is the magnetic length. It is of crucial
importance that fνðfξgÞ does not depend onQ or the metricffiffiffi
g

p
. This will not be the case for PH-dual states. Such states

comprise a proper subset of chiral FQH states, i.e., FQH
states with fully chiral effective edge theories [34].
The central object of interest is the logarithm of the

normalization factor

Zν½W� ¼
Z

½dξ�jfνðfξgÞj2e
P

i
Wðξi;ξ̄iÞ; ð4Þ

where ½dξ� ¼ d2ξ1…d2ξN with d2ξ ¼ dxdy, and W ¼
Qþ log

ffiffiffi
g

p
. We assume that for constant magnetic field

and flat space, when W¼−jzj2=2l2, the state is normalized
and Zν¼1. It is not hard to see that logZν½W� is the
generating functional of the density correlation functions [19]

hρνðζÞi≡ hΨνjρνðζÞjΨνi ¼
1ffiffiffi
g

p δ logZν½W�
δWðζÞ ; ð5Þ

where ρνðζÞ ¼ ð1= ffiffiffi
g

p ÞPNν
i¼1 δðζ − ξiÞ is the density oper-

ator, and Nν is the number of particles in the state Ψν. In
writing hρνi we will always implicitly assume that the
expectation value is taken in the state with the filling factor ν.
The second variation produces the connected two-point

function [19]

hρνðζÞρνðζ0Þic ¼
1ffiffiffiffiffiffiffiffiffiffi
gðζ0Þp δ

δWðζ0Þ hρνðζÞi; ð6Þ

where hρνðζÞρνðζ0Þic ¼ hρνðζÞρνðζ0Þi − hρνðζÞihρνðζ0Þi.
The static structure factor is defined as the Fourier trans-
form (q is the dimensionless momentum)

sνðqÞ ¼
1

ρ̄ν
hρνðqÞρνð−qÞic; ð7Þ

where ρ̄ν ¼ ν=ð2πl2Þ is the mean electron density in the
homogeneous limit.

It follows from (2) that in flat space, derivatives with
respect toW and B can be traded with each other. Going to
momentum space we recover [19]

sνðqÞ ¼
q2

2

2π

ν

δhρνðqÞi
δBð−qÞ ¼ q2

2

σHν ðqÞ
σHν ð0Þ

; ð8Þ

where we used the Středa formula δhρνi=δB ¼ σHν [35], and
the dc Hall conductance σHν ð0Þ ¼ ν=2π.
We will also need to know how the electron density

depends on the spatial curvature. This dependence is
captured by the function ηνðqÞ ¼ ð2π=νÞδhρνi=δR [19].
In general, ηνðqÞ has the following momentum expansion:

ηνðqÞ ¼
S
4
−

b
4ν

q2 þOðq4Þ; ð9Þ

where the constant b is an a priori nonuniversal parameter.
However in the LLL it is determined by the topological
quantum numbers [11]

b ¼ νs̄ð1 − s̄Þ þ ~c
12

; ð10Þ

where ~c ¼ c− − 12νvarðsÞ. It is also known to control the
Berry curvature on the moduli space of higher genus
surfaces [18]. Note that the kinematic Hall viscosity [36]
follows from the zero momentum limit of the curvature
response ηHν =ρ̄ν ¼ ηνð0Þ [20]. At the same time using the
expression for the scalar curvature R ¼ −Δg log

ffiffiffi
g

p
, and

the general relation, valid for any metric-independent
operator O [19]

−
l2

2
Δg

δhOi
δ

ffiffiffi
g

p ¼
�
1 −

l2

2
Δg

�
hOρνic ð11Þ

it is possible to show that [19]

sνðqÞ ¼
q2=2

1þ q2=2
ðq2ηνðqÞ þ 1Þ: ð12Þ

These relations imply

sνðqÞ ¼
1

2
q2 þ S − 2

8
q4 −

�
b
8ν

þ ðS − 2Þ
16

�
q6 þ…: ð13Þ

This relation, together with Eq. (10), was derived for the
Laughlin states in [19], and conjectured to hold for states of
the form (1) with varðsÞ ¼ 0 in [20]. We conjecture that it
holds generally for chiral FQH states.
Finally, combining (8) and (12) we establish an exact

relation between Hall conductivity and ηνðqÞ
σHν ðqÞ
σHν ð0Þ

¼ 1

1þ q2=2
ðq2ηνðqÞ þ 1Þ: ð14Þ

Relations (8), (12), and (14) hold to all orders in q, under
the assumption of the absence of Landau level mixing and
long-range interactions. Together with (10) these relations
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imply that the first 3 terms in the momentum expansion of
σHν ðqÞ and sνðqÞ are completely determined by the topo-
logical quantum numbers.
Particle-hole transformation in inhomogeneous

background.—Following Girvin [1], we define Ψ1−νðfzgÞ
as a state of holes at filling ν, which, when viewed as a state
of electrons, has filling 1 − ν. Let z1;…; zM be the coor-
dinates of electrons and ξ1;…; ξN be the coordinates of
holes. Then the PH dual state is defined as

Ψ1−νðfzgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þMÞ!
N!M!

r Z
½dξ�Ψ1ðfzg; fξgÞΨ�

νðfξgÞ;

ð15Þ
whereΨνðfξgÞ is given by (1) andΨ1 is the ν ¼ 1 state. The
overall factor is required to ensure that the PH-dual state is
normalized to 1 in constant magnetic field and flat space.
A defining property of the PH transformation is that it is an
involution

Ψ1−ð1−νÞðfξgÞ ¼ �ΨνðfξgÞ: ð16Þ
Property (16) is ensured by the following identity. First, we
define an n-particle reduced density matrix [37]

PðnÞ
η ðξ1;…; ξn; ξ01;…; ξ0nÞ

¼ Nη!

n!ðNη − nÞ!
1

Zη½W�
Z

½dξ̂�Ψηðξ̂nþ1;…; ξ̂Nη
; ξ1;…; ξnÞ

× Ψ�
ηðξ̂nþ1;…; ξ̂Nη

; ξ01;…; ξ0nÞ: ð17Þ
For η ¼ 1, this density matrix is a projector to the LLL
satisfying

ΨνðfξgÞ ¼
Z

½dξ0�PðNνÞ
1 ðfξg; fξ0gÞΨνðfξ0gÞ: ð18Þ

Equation (16) follows by applying PH conjugation to
Ψ1−ν and expressing the resulting convolution integral for
Ψ1−ð1−νÞ in terms of (18). We make extensive use of the
following formula relating the two-particle reduced density
matrices between PH-dual states [38]

Pð2Þ
1−νðξ1;ξ2;ξ1;ξ2Þ
¼ Pð2Þ

1 ðξ1; ξ2; ξ1; ξ2Þ þPð2Þ
ν ðξ1; ξ2; ξ1; ξ2Þ

þ 1

2
Pð1Þ

1 ðξ1; ξ2ÞPð1Þ
ν ðξ2; ξ1Þ þ

1

2
Pð1Þ

1 ðξ2; ξ1ÞPð1Þ
ν ðξ1; ξ2Þ

−
1

2
hρ1ðξ1Þihρνðξ2Þi−

1

2
hρ1ðξ2Þihρνðξ1Þi: ð19Þ

Integrating over position ξ2 reduces this to a simple
formula relating the electron density (in inhomogeneous
background)

hρνi þ hρ1−νi ¼ hρ1i: ð20Þ

Equations (19) and (20) reveal the PHD, and are the central
results of the present Letter. Next we will discuss the
physical consequences of the duality.
Particle-hole duality.—The Hall conductivity and cur-

vature response in the PH-dual state can be found using
(20). Taking a derivative with respect to the magnetic field
BðqÞ, and applying the Středa formula we obtain an exact
relation between the Hall conductivities

σHν ðqÞ þ σH1−νðqÞ ¼ σH1 ðqÞ: ð21Þ
Similarly we find

νηνðqÞ þ ð1 − νÞη1−νðqÞ ¼ η1ðqÞ: ð22Þ
These are exact relations connecting the linear response

functions of PH conjugate pair states, and hold for all LLL
wave functions connected by (15). They are new results
of the present Letter.
Next, we turn to the normalization factor. It follows

directly from the definition of the reduced density matrix
and the reproducing formula (18), as well as the definition
of the generating functional (4) that

Z1−ν

Zν
¼ Z1 ⇒ logZ1−ν − logZν ¼ logZ1; ð23Þ

where we have dropped the argument of Zν for brevity.
Equation (23) is an exact relation between the generating
functionals for a pair of PH-dual states. Equation (23)
clearly illustrates the duality, and is a new result of the
present Letter.
Assuming now that Ψν has the form (1), variation of

logZ1−ν over Wðζ; ζ̄Þ is given by

δ

δWðζÞ logZ1−ν ¼ hρ1i þ hρνi ¼ hρ1−νi þ 2hρνi: ð24Þ

We emphasize that since (24) does not have the same form
as (5), the wave function Ψ1−ν does not have the form (1).
More precisely, we see that f1−ν has to depend on W. In
other words, the dual states couple differently to the
inhomogeneous magnetic field. It appears that the condition
for fν to be independent ofW has to do with the chirality of
a state [39]. For instance, all conformal block trial states
share this property. This complication indicates that identity
(23) is not sufficient to extract all of the observables in a
PH-dual state in terms of the observables in the original
state, because the relationship between the observables and
variations of logZ1−ν is more complicated for Ψ1−ν states.
Now we will derive an analog of (8) for the dual states.

By definition, the two-point density correlation function is
related to the two-particle density matrix via

hρνðζÞρνðζ0Þi ¼ hρνðζÞiδðζ − ζ0Þ þ 2Pð2Þ
ν ðζ; ζ0; ζ; ζ0Þ:

In the translation-invariant limit, the one-particle density
matrix for the ν state is known to be [37]
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Pð1Þ
ν ðζ; ζ0Þ ¼ ρ̄νeζζ̄

0=2l2−jζ0j2=2l2 : ð25Þ
In this limit, Eq. (19) then becomes

hρ1−νðζÞρ1−νðζ0Þic
¼ hρνðζÞρνðζ0Þic þ

ρ̄1 − 2ρ̄ν
ρ̄1

hρ1ðζÞρ1ðζ0Þic: ð26Þ

Taking the Fourier transform, we find a beautiful exact
relation between the projected static structure factors
s̄ν ¼ sν − s1 for a pair of PH-dual states [40]

ρ̄νs̄νðqÞ ¼ ρ̄1−νs̄1−νðqÞ: ð27Þ
This relation is another novel result of the Letter.
Equation (27) also follows from the relation between the
pair-correlation functions [42] for the dual states [43]. We
stress here that (27) requires only holomorphicity of the
wave function.
Now we are in position to relate the Hall conductivity to

the SSF of the PH-dual state

σH1−νðqÞ ¼ σH1−νð0Þ
2

q2
ðs1ðqÞ − s̄1−νðqÞÞ: ð28Þ

The simplest way to obtain (28) is to use (21) and (27), and
assume (8).
Next we will derive an analog of (12) for PH-dual states.

Using (21), (22), and (14) we find

s̄1−νðqÞ ¼ s1ðqÞ −
q2=2

1þ q2=2
ðq2η1−νðqÞ þ 1Þ: ð29Þ

Excluding s1−νðqÞ from (28) and (29) we come to a
surprising conclusion—the relation between σH1−νðqÞ and
η1−νðqÞ is precisely the same as before the PH trans-
formation (14), up to replacing ν by 1 − ν. Equation (14) is
thus invariant under PH transformation.
Berry curvature.—Next we turn to the dependence of the

PH-dual states on parameters such as adiabatically varying
fluxes of magnetic field or the modular parameter of a
torus τ. Denote any of these parameters in complex
coordinates as x and x̄. Berry curvature can be computed
under the assumption that the stateΨν is holomorphic in the
coordinates on the parameter space, except for the real-
analytic normalization factor. The normalized states have
the form [16,18,44]

ψνðfξ; ξ̄g; x; x̄Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zν½x; x̄�
p Ψνðfξ; ξ̄g; xÞ: ð30Þ

Then the holomorphic component of the Berry connection
is determined entirely by the normalization factor

Ax ≡ ihψνj∂xjψνi ¼
i
2
∂x logZν; ð31Þ

which follows by using the identity ∂xhψνjψνi ¼ 0 to trade
derivatives of Ψν for derivatives of Zν. Thus, for such

holomorphic states the Berry curvature is a Kähler form
with the Kähler potential Uν ¼ logZν, and is given by

Ων ¼
i
2
ð∂x∂ x̄UνÞdx ∧ dx̄: ð32Þ

This structure is nearly preserved for the PH-dual state.
A straightforward calculation shows that the Kähler poten-
tial is U1−ν ¼ logðZ1=ZνÞ, which is not the logarithm of
the normalization as before. Thus, in contrast to the
formula (23), the Berry curvature obeys

Ων þ Ω1−ν ¼ Ω1: ð33Þ

PHD and Chern-Simons terms.—The first few terms in
the long wave expansion of σHν ðqÞ, sνðqÞ, and ηνðqÞ are
determined by the topological quantum numbers, which
appear as the coefficients of the Chern-Simons terms in the
effective action [11,19,28].
The Chern-Simons part of the effective action is given

by [14,16]

Wν
CS ¼

ν

4π

Z
ðAþ s̄ωÞdðAþ s̄ωÞ − ~c

48π

Z
ωdω; ð34Þ

where ~c ¼ c− − 12νvarðsÞ and other coefficients are
the topological quantum numbers discussed in the
Introduction. We have also introduced ωμ—a spatial part
of the spin connection satisfying ∂1ω2 − ∂2ω1 ¼ 1

2

ffiffiffi
g

p
R.

This effective action encodes the linear response functions.
Notably, the Hall conductance, shift, and the Hall viscosity,
averaged over the sample, are given by

σHν ¼ ν

2π
; S¼ ν−1N−Nϕ

χ=2
; ηHν ¼ s̄

2
ρ̄νþ

~c
24

χ

A
; ð35Þ

where A and χ are, respectively, the area and the Euler
characteristic of the sample, N is the number of electrons,
and Nϕ is the total magnetic flux in units of the flux
quantum. When a FQH state is constructed as a single
conformal block in a conformal field theory [16,45]
~c ¼ c−. However, in general (and notably for Jain states)
varðsÞ does not vanish [14].
The action of PH transformation on the Chern-Simons

part of the effective action is

Wν
CS þW1−ν

CS ¼ W1
CS: ð36Þ

This can be seen as a consequence of the formula for the
Berry curvature (33) following the arguments of [16]. In
addition to νPH ¼ 1 − ν it implies

SPH ¼ 1− νS
1− ν

; varðsÞPH ¼ ν

ν− 1

�ð1−SÞ2
4ð1− νÞ þ varðsÞ

�
:

ð37Þ
PHD also transforms the chiral central charge according to
cPH− ¼ 1 − c−, and ~cPH ¼ cPH− − 12νPHvarðsÞPH. Curiously,
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if the initial state had varðsÞ ¼ 0, then varðsÞPH ≠ 0, unless
S ¼ 1.
As another example we provide an explicit formula for

the first two terms in the long-wave expansion of the
projected SSF of a PH-dual state

s̄1−νðqÞ ¼
νðS − 1Þ
8ð1− νÞ q

4 þ ð−6bþ 5ν− 3νSÞ
48ð1− νÞ q6 þ…; ð38Þ

where b is given by (10) and all of the topological quantum
numbers are known for a large variety of states [14].
Equation (38) follows from using (13) in (27), and is
another new result of the present Letter. For example, it can
be readily used to determine the projected SSF for the
ν ¼ ðq − 1Þ=q states, related to the Laughlin states by the
PHD. Note that all of the quantum numbers are taken from
the state at filling ν. We are not aware of this type of general
result in the literature.
Finally, we comment on the topological quantum num-

bers for a self-dual state which satisfies Ων ¼ Ω1−ν. This
state was discussed by Son [3] and is known as the PH
Pfaffian. We find that it must have ν ¼ 1=2, S ¼ 1,
c− ¼ 1=2 and varðsÞ ¼ 0.
Jain states.—We apply our relations to the PH duals of

ν ¼ N=ð2N þ 1Þ Jain states with the relevant topological
quantum numbers given by

S ¼ Nþ 2; c− ¼ N; νvarðsÞ ¼ NðN2 − 1Þ
12

: ð39Þ

Then the projected SSF of the PH-dual state is given by

s̄ Nþ1
2Nþ1

ðqÞ ¼ N
8
q4 þ N4 þ 2N3 − 2N2 − 2N

48ðN þ 1Þ q6 þ…: ð40Þ

To the best of our knowledge (40) is a new result.
Hall conductivity of Jain’s state at the filling factor ν ¼

N=ð2N þ 1Þ and its PH-dual state at the filling factor
ð1 − νÞ ¼ ½ðN þ 1Þ=ð2N þ 1Þ� can be calculated exactly, in
the large N limit using the Dirac composite fermion theory
and the results of [46]. In the regime z ¼ qð2N þ 1Þ ∼ 1
[47] the result is

σHν ðqÞ ¼
ðð4N þ 2Þ2 − z2Þð8N þ 2zJ2ðzÞ

J1ðzÞ Þ
64πð2N þ 1Þ3 ; ð41Þ

σH1−νðqÞ ¼
ðð4N þ 2Þ2 − z2Þð8N þ 8 − 2zJ2ðzÞ

J1ðzÞ Þ
64πð2N þ 1Þ3 ; ð42Þ

where JαðzÞ is the Bessel function. The correction to this is
order OðN−4Þ. We have also assumed absence of long-
range interactions.
The projected SSF can also be derived exactly using

Dirac composite fermion theory [3]

s̄νðqÞ ¼
z3ðð4N þ 2Þ2 − z2ÞJ2ðzÞ
32Nð2N þ 1Þ4J1ðzÞ

; ð43Þ

s̄1−νðqÞ ¼
z3ðð4N þ 2Þ2 − z2ÞJ2ðzÞ
32ðN þ 1Þð2N þ 1Þ4J1ðzÞ

: ð44Þ

With these expressions at hand we can check that (21) holds
up to order N−2. It also follows from (41)–(44) that (8) and
(28) hold in the large N limit at leading and subleading
orders in N. We emphasize that these are quite nontrivial
checks that probe the relations we derived in all orders in
the momentum expansion.
Conclusion.—We have presented arguments for the

particle-hole duality in the lowest Landau level. This
duality implies several exact, nonperturbative relations
between the observables in the pair of PH-dual states such
as static structure factor, Hall conductivity, and response
of the electron density to curvature. Our results for the
coefficients of the small momentum expansion of these
response functions likely do not hold for PH-dual states
which are both nonchiral (as defined in [48], see also [8])—
a notable example of such a state is the PH Pfaffian.
However, Eq. (27) should be applicable to such states as
well. We leave the investigation of general nonchiral states
(and in particular the PH Pfaffian) to future work.
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