
Synchronization Dynamics in a Designed Open System

Nobuhiko Yokoshi,1,* Kazuki Odagiri,1 Akira Ishikawa,2 and Hajime Ishihara1
1Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

2Department of Science for Advanced Materials, University of Yamanashi, Kofu 400-8511, Japan
(Received 9 September 2016; published 18 May 2017)

We theoretically propose a unifying expression for synchronization dynamics between two-level
constituents. Although synchronization phenomena require some substantial mediators, the distinct
repercussions of their propagation delays remain obscure, especially in open systems. Our scheme
directly incorporates the details of the constituents and mediators in an arbitrary environment. As one
example, we demonstrate the synchronization dynamics of optical emitters on a dielectric microsphere. We
reveal that the whispering gallery modes (WGMs) bridge the well-separated emitters and accelerate
the synchronized fluorescence, known as superfluorescence. The emitters are found to overcome the
significant and nonuniform retardation, and to build up their pronounced coherence by the WGMs, striking
a balance between the roles of resonator and intermediary. Our work directly illustrates the dynamical
aspects of many-body synchronizations and contributes to the exploration of research paradigms that
consider designed open systems.
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Since Huygens noticed that two pendulum clocks with a
common support tend to exhibit synchronized oscillation
[1], spontaneous synchronization without external driving
has been recognized as ubiquitous behavior appearing in
many areas of science and engineering [2–5]. The concept
was extended to quantum mechanical systems such as
Josephson junction and laser arrays [2]. One of the most
exemplary targets is the spontaneous synchronization of
photoemissions, i.e., superfluorescence, a particular style of
Dicke superradiance [6]. Densely spaced dipoles exchange
photons and radiate a pulsed light after building up a
macroscopic polarization. Such dynamics have been
observed in atomic gases [7,8] and impurities or carriers
in solids [9–12]. The recent realization in artificial nano-
structures [13,14] is a development that is promising to
both fundamental many-body studies and applications. The
conceivable next task is to design the synchronization by
controlling dipole configuration and the surrounding
environment. Despite numerous studies from various
approaches [15–23], no practical scheme to approach this
problem has yet been established.
As every synchronization is mediated by external agents,

there must be some retardation effect. More importantly,
the mediators themselves are scattered, absorbed, or
amplified in open systems. Therefore, for a practical and
versatile evaluation of the dynamics, it is essential to
incorporate these effects. Here, we present a synchroniza-
tion equation for two-level optical emitters that directly
incorporates their locations and the mediators’ nonuniform
propagations. The proposed scheme makes it possible to
treat the emitters in natural or artificial lattices, as well as in
optical resonators [24] or plasmonic near fields [25]. To
design the synchronizing system in detail gives us an actual

advantage in building original functions of many-body
systems.
Let us consider the dynamics of N two-level emitters.

The emitter at r ¼ ri has the dipole moment di ¼ dei
(i ¼ 1; 2;…; N), with ei being the unit vector. The
photon configures the electric field EðrÞ ¼
iΣα

R
dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏcjkj=16π3ϵ0Þ

p
bk;αfk;αðrÞ þ H:c:, where the

operator bk;α annihilates a photon of the wave function
fk;αðrÞ having the wave vector k and polarization α ¼ �1.
Here, ℏ is the Dirac constant, c the speed of light, and ε0 the
vacuum permittivity. The whole Hamiltonian is

H¼
X
α

Z
dkℏcjkjb†k;αbk;α

þ
XN
i¼1

ℏωiσ
þ
i σ

−
i −

XN
i¼1

di ·EðriÞðσþi þσ−i Þ; ð1Þ

where the operator σ�i flips the two levels separated by the
frequency ωi. Assuming that the light-matter interaction is
near resonant and much smaller than the intrinsic energies,
we safely neglect b†k;ασ

þ
i and bk;ασ−i .

To estimate the emitter correlation, we aim to incorporate
the photon field by introducing the retarded photon Green
function, instead of the wave function itself. Hence, we
simultaneously solve the Heisenberg equations for the
following three density matrix elements: photon density
hb†k;αbk;αi, photon-assisted polarization hb†k;ασ−i i, and emit-
ter-emitter correlation hσþi σ−j i. Although a full quantum
mechanical treatment causes an infinite hierarchy of the
equations, we can truncate this series using dynamical
decoupling and treat up to the second-order cumulant of σ�i
[26,27]. Note that the expectation values of hbk;αi and hσ�i i

PRL 118, 203601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
19 MAY 2017

0031-9007=17=118(20)=203601(5) 203601-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.203601
https://doi.org/10.1103/PhysRevLett.118.203601
https://doi.org/10.1103/PhysRevLett.118.203601
https://doi.org/10.1103/PhysRevLett.118.203601


are disregarded as we do not consider a coherent pumping.
Here, we apply the adiabatic approximation to the
simultaneous equations; the time derivative of hb†k;ασ−i i
is taken to be zero, leading to the stationary solution
hb†k;ασ−i i ∝ iΣN

m¼1hσþmσ−i idi · fk;αðriÞ=ðcjkj − ωiÞ. This
approximation is justified in typical excitonic systems,
as the formation of the polarization is much faster than the
other time scales. The validity of this approximation was
intensively discussed in the previous study [21].
Substituting this solution into the simultaneous equations,
the equation for hσþi σ−j i becomes independent of the
photon operator bk;α, and the photon field appears only
through the dyadic Green function,

Ḡðr; r0;ωÞ ¼
X
α

Z
dk

cjkj½fk;αðrÞ ⊗ f�k;αðr0Þ�
16π3ðcjkj − ωÞ ;

which characterizes the profile of the electric field EðrÞ in
the absence of the emitters, and includes both the longi-
tudinal and transverse components [28].
As a result, the emitter-emitter correlation is found to

obey the equation

∂
∂t hσ

þ
i ðtÞσ−j ðtÞi

¼ iðωi − ωjÞhσþi σ−j i

þ i
2

XN
m¼1

�
hσþi σ−mi

Cmj

τm
hσzji − hσzi i

Cim

τi
hσþmσ−j i

�
; ð2Þ

where σzi ¼ ðσþi σ−i − σ−i σ
þ
i Þ represents the excited state

occupation. The emitter-emitter coupling is determined by
the radiation decay time τi ¼ 3πc3ℏε0=ðω3

i d
2Þ [29]. The

dimensionless function Cij¼ð6πc3=ω3
i Þei ·Ḡðri;rj;ωiÞ ·ej

describes the retarded propagator between the distant
emitters. When all the dipole moments are aligned and
close packed in a small region, no retardation appears
(Im½Cij� → 1) [30]. Moreover, the equation becomes equiv-
alent to the Kuramoto model for the closed system; i.e.,
jhσþi ðtÞσ−j ðtÞij ¼ 1 [2].
There exist various factors that prevent the synchroniza-

tion from being met [2]. Among them, the retardation effect
can be a limiting factor since the surrounding environment
itself confines or radiates the photon with time. Such a
nonequilibrium retardation is quite sensitive to the loca-
tions of the emitters because the emitted photons do not
always propagate uniformly. Here, we have incorporated
the photon propagations directly into the time-evolution
equation of the emitter-emitter correlations. Once the
photon Green function is obtained analytically or numeri-
cally, we can examine how the emitters build up the
cooperative correlation for an arbitrary environment, loca-
tions, initial occupancies, and intrinsic frequencies. From
that perspective, Eq. (2) provides a unifying framework to
simulate synchronizations, and helps to design a

synchronizing system. Furthermore, as far as the spin-
boson model represents the whole system [31], it may be
applied without any change to synchronizations utilizing
other mediators: phonons [32,33], magnons [34,35], and
plasmons [36].
In the following, we demonstrate the utility of our scheme

in the specific system. We focus on uniaxial two-level
emitters that are positioned randomly on a dielectric
polystyrene microsphere [Fig. 1(a)]. Such microspheres
usually act as whispering gallery mode (WGM) resonators
when photons propagate around the boundary by total
internal reflection [37]. However, the smaller the sphere
radius becomes, the faster the microsphere radiates WGMs
through quantum tunneling effects at the curved boundary.
Therefore, such modes can bridge the coherence of
more than one emitter. To visualize the synchroni-
zation, we calculate the fluorescent dynamics IðtÞ≡P

α

R
dk∂hb†k;αbk;αi=∂t. The time derivative of the photon

optical emitter

pump
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FIG. 1. (a) Schematic view of four-level optical emitters
randomly positioned on a polystyrene sphere, and an energy
diagram of them. We assume that all the dipoles are aligned in
one direction. Utilizing the pump light resonating with none of
the WGMs, we first excite the higher state (or continuum) jEii,
which relaxes into the state j1ii by fast and radiationless decay.
This prepares the initial state, whereby each two-level state
fj0ii; j1iig is incoherent and population inverted. (b) Scattering
cross section of the polystyrene sphere plotted against its radius
rs. Each peak corresponds to the WGM that resonates with the
j0ii − j1ii excitations.
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density obeys the Heisenberg equation: ∂hb†k;αbk;αi=∂t¼
2ΣN

i¼1Re½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏcjkj=16π3ϵ0Þ

p
hb†k;ασ−i ifk;αðriÞ·di�. Using the

adiabatic approximation as in deriving Eq. (2), one can find
the expression

IðtÞ ¼
XN
i;j¼1

1

τi
Im½Cijhσþi ðtÞσ−j ðtÞi�: ð3Þ

It becomes equivalent to the well-known expression of the
fluorescence when no retardation appears (Im½Cij� → 1)
[15]. The specific form of the Green function is obtained
by matching the solutions of Maxwell’s equation,
½∇ × ∇ × −ϵðrÞðω2=c2Þ�Ḡðr; r0;ωÞ ¼ ðω2=c2Þδðr − r0Þ1̄,
at the boundary [38]. In this study, we analytically connect
the Green function inside the microsphere [the relative
permittivity ϵðrÞ ¼ 2.5] and that in a vacuum [ϵðrÞ ¼ 1].
The Green function essentially includes the divergence at
r ¼ r0. Thus, we have to introduce an ultraviolet cutoff [30].
Here, we have employed the cutoff originating from the
radius of the emitters, ∼5 nm.
We assume that all the emitters are initially in the excited

state and are uncorrelated, i.e., hσþi ð0Þσ−j ð0Þi ¼ δij, and
that the microsphere is in its ground state. To prepare such a
state, the four-level molecules are considered to be pro-
spective emitters [Fig. 1(a)]; the intermediate states
fj0ii; j1iig act as two-level emitters that are separated by
a common energy ℏω ¼ 3.0 eV (corresponding to the
wavelength λ ¼ 413 nm). For simplicity, we assume that
their dipole moments are aligned and that their radiation
delay times are the same, τ ¼ 100 ps. The scattering cross
section of the microsphere is calculated by Mie scattering
theory [38]. In Fig. 1(b), we plot this against the sphere
radius rs divided by λ. The resonant WGMs are identified
by the sharp peaks, among which we choose the radii
indicated by red arrows. When the sphere radius is
rs=λ ¼ 3.184, the corresponding WGM is a transverse
magnetic mode with the lifetime τWGM ¼ 40 ps.
Additionally, for rs=λ ¼ 3.112 and 2.461, the correspond-
ing WGMs are the transverse electric modes whose life-
times are τWGM ¼ 20 and 6 ps, respectively. The
polarization of the WGM does not clearly influence the
fluorescent dynamics due to the randomness of the uniaxial
emitter positions. On the other hand, its lifetime can change
the fluorescent statistics [39].
Figure 2(a) shows the fluorescent dynamics from the

emitters on the sphere rs=λ ¼ 3.184, where the ratio of
the radiation decay time of the emitters and that of the
corresponding WGM is η ¼ τWGM=τ ¼ 0.4. Although the
observed intensities are enhanced, they exhibit the expo-
nential decays; i.e., IðtÞ ∼ Ið0Þ exp½−Ið0Þt=N�. This has no
resemblance to the Dicke superfluorescence [6]; it is
reproduced when all the emitters are close packed in a
vacuum [see inset of Fig. 2(a)]. This means that the
polystyrene sphere acts exactly as a resonator. The photons

are confined in the sphere as the WGMs rather than
mediating the emitters.
Utilizing just a little smaller sphere, the situation changes

dramatically. Figures 2(b) and 2(c) show the fluorescent
dynamics for rs=λ ¼ 3.112 (η ¼ 0.2) and 2.461 (η ¼ 0.06).
One can see that the intensities increase at the onset of the
fluorescence for N ≥ 100, which clearly indicates the
appearance of the synchronization. It should be noted that
the mean separation between the emitters exceeds the
radiation wavelength λ. The mediator photons distinguish
the locations of the individual emitters sufficiently, and
the retardation effect can be serious. However, since all the
WGMs propagate while geometrically confined near the
spherical surface, the phase disturbance due to the random
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FIG. 2. Fluorescent dynamics from the optical emitters. Here,
I1 ¼ 1=τ is the fluorescence intensity from an isolated emitter in a
vacuum. (a) Spontaneous emission accelerated by the resonator
effect of theWGM in the polystyrene sphere (rs=λ ¼ 3.184). Inset:
We plot the synchronized fluorescence (superfluorescence) where
all the emitters are close packed in a vacuum. (b) Synchronized
fluorescence when the polystyrene sphere radii is rs=λ ¼ 3.112.
Inset: We plot the intensity when the microsphere is removed.
(c) The same plot for the case using the sphere with rs=λ ¼ 2.461.
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retardations is alleviated as a whole. In addition, as the
lifetime τWGM decreases, the WGM penetrates more deeply
into the vacuum, and thus the interemitter communication
becomes activated. In fact, the synchronization disappears
when only the sphere is removed [see inset of Fig. 2(b)].
Nevertheless, the demonstrated fluorescence exhibits

somewhat different behavior from Dicke superfluorescence
scaled by the delay time τDSd ¼ τðlnNÞ=N [15,16]. The
initial increase of the fluorescent intensity undoubtedly
indicates the accelerated synchronization; the delay time
follows the same scaling law as in Dicke superfluorescence,
i.e., τd=τ ¼ αðlnNÞ=N [see Fig. 3(a)]. The factors of

proportionality are α ¼ 0.14 for η¼ 0.06 (rs=λ ¼ 2.461),
and α ¼ 0.05 for η ¼ 0.2 (rs=λ ¼ 3.112). On the other
hand, after achieving synchronization (t > τd), the intensity
shows the near-exponential decay, of which the time
constant decreases with η. This is because, once the
synchronization is achieved, the WGMs no longer mediate
the emitters and the fluorescence decay is governed by the
faster process: the photoemission via the WGM resonator.
We can see from these results that nonuniform propagations
of mediators play the key role in evaluating synchroniza-
tion dynamics in open systems.
Finally, we mention a possible setup to verify the

synchronized fluorescence. One of the candidates consists
of dye molecules conjugated with proteins that coat a
polystyrene microsphere [40]. The substantive dyes must
have some dispersion in the resonant energy. Then, we plot
in Figs. 3(a) and 3(b) the fluorescent dynamics when the
N ¼ 100 emitters possess the distributed energies with
standard deviation σ. Although the intensity drops consid-
erably for σ > ΔEWGM=6, the dispersion is not influential
for smaller σ. Here, ΔEWGM is the full spectral width of the
WGM. This can be understood by considering the char-
acteristics of the standard deviation, whereby over 99.9%
of the constituents are in the range between �3σ from the
peak. Therefore, among the dye molecules coating the
microsphere, only those whose resonant energies are
covered by the WGM spectra participate in the synchro-
nization. However, it seems feasible to synchronize hun-
dreds of the qualifying emitters in reality, because 105–106

molecules are tethered to the sphere [40].
To conclude, we have proposed a new scheme for

examining synchronization of two-level emitters. As long
as Green’s function for the surrounding environment is
obtained analytically or numerically, the scheme enables us
to simulate synchronizations in arbitrary systems, and helps
to design a synchronizing system. As one example of
design, we investigated emitters on a polystyrene micro-
sphere and demonstrated peculiar synchronization dynam-
ics. The emitters can overcome the retardation effect and
develop cooperative correlations even when their mean
separation exceeds the radiation wavelength. Here, the
WGMs combine two roles: mode resonator and synchro-
nization mediator. Such synchronization dynamics can
never be examined without incorporating the detailed
information such as the emitters’ locations and the medi-
ators’ propagations. As “designed synchronization” can
provide a direction to building original functions of many-
body systems, our results offer a new paradigm in science
and engineering.
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FIG. 3. (a) Delay times of the synchronization τd in the case of
close-packed emitters and of those on the polystyrene spheres.
The red line represents the analytical result τDSd =τ ¼ ðlnNÞ=N,
whereas the other two lines represent constant multiples of the red
line to fit the plots. (b) Influence of the resonant-level distribution
for the N ¼ 100 emitters. The radii of the polystyrene spheres are
rs=λ ¼ 3.112. (c) The same plot for rs=λ ¼ 2.461. Here, σ is the
standard deviation from the peak resonant energies 3.0 eV, and
ΔEWGM is the full width of the corresponding WGM.
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