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We theoretically study multielectron effects in high-harmonic generation (HHG), using all-electron
first-principles simulations for a one-dimensional model atom. In addition to the usual plateau and cutoff
(from a cation in the present case, since the neutral is immediately ionized), we find a prominent resonance
peak far above the plateau and a second plateau extended beyond the first cutoff. These features originate
from the dication response enhanced by orders of magnitude due to the action of the Coulomb force from
the rescattering electron, and, hence, are a clear manifestation of electron correlation. Although the present
simulations are done in 1D, the physical mechanism underlying the dramatic enhancement is expected to
hold also for three-dimensional real systems. This will provide new possibilities to explore dynamical
electron correlation in intense laser fields using HHG, which is usually considered to be of single-electron
nature in most cases.
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Atoms and molecules interacting with intense
(≳1014 W=cm2) visible-to-midinfrared laser pulses exhibit
a nonperturbative nonlinear response such as above-
threshold ionization, tunneling ionization, high-harmonic
generation (HHG), and nonsequential double ionization [1].
HHG, especially, forms the basis for attosecond science
[2–4] as a highly successful means to generate attosecond
coherent light pulses in the extreme-ultraviolet and soft
x-ray regions [5–8], as well as to probe the electronic
structure [9,10] and dynamics [11–13] in atoms and mol-
ecules. In the context of the latter, it is crucial to understand
how HHG spectra reflect the electronic structure. As
representative examples in atomic systems, the Cooper
minimum in Ar [14], autoionizing resonance in Snþ [15],
and the giant resonance in Xe [16] have been reported to
imprint themselves in HHG spectra. All of these can be
understood basically as features of single-photon ionization,
i.e., the inverse process of recombination, which is the last
step in the semiclassical three-step model [17,18] of HHG.
In this Letter, we predict a new mechanism leading to

a drastic enhancement in HHG spectra, induced by the
interaction of the recolliding electron with the electrons in
the parent ion. We numerically simulate HHG from a one-
dimensional multielectron model atom using a recently
developed first-principlesmethod called the time-dependent
complete-active-space self-consistent-field (TD-CASSCF)
method [19–21].We find, in harmonic spectra from1DBe, a
prominent peak that cannot be attributed to any resonant
transition in Be and Beþ. Our analyses reveal that, whereas
the cation (Beþ) plays a dominant role in the formation of the
main plateau (neutral Be is immediately ionized and does
not contribute to HHG), the peak originates from resonant

excitation in the dication (Be2þ) induced by the recolliding
electron. In addition, the action of the rescattering electron
also drastically enhances harmonic generation from the
dication to form the second plateau in the HHG spectrum.
Thus, HHG spectra can reflect not only the electronic
structure of the species (typically a neutral atom but a cation
in this study) from which the returning electron is released
[14–16], but also that of the parent ion (typically a cation but
a dication in this study) with which the returning electron
collides. The enhancement of the latter signal is a clear
manifestation of multielectron effects.
The Hamiltonian for a 1D N-electron model atom with

atomic number Z interacting with an external laser electric
field EðtÞ is taken in the length gauge as (we use Hartree
atomic units throughout unless otherwise stated)

H ¼
XN
i¼1

�
−
1

2

∂2

∂x2i −
Zffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

p − EðtÞxi
�

þ
XN
i>j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xjÞ2 þ 1

q ; ð1Þ

where xi (i ¼ 1;…; N) denotes the position of the ith
electron, and we use soft Coulomb potentials for ele-
ctron-nuclear and electron-electron Coulomb interactions.
We simulate the electron dynamics governed by this
Hamiltonian using the recently developed TD-CASSCF
method [19–21].
In this method, the N-electron wave function ΨðtÞ is

expressed as a superposition,
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ΨðtÞ ¼
X
I

CIðtÞΦIðtÞ; ð2Þ

of Slater determinantsΦIðtÞ built from a given number n of
orthonormal orbital functions fψpðtÞg. Both configuration-
interaction coefficients CIðtÞ and orbital functions are time
dependent, which allows the use of considerably fewer
orbitals than in fixed-orbital approaches. The orbitals are
flexibly classified into core and active subspaces (see Fig. 1
of Ref. [19]). We assume that nC core orbitals, accom-
modating tightly bound electrons, are doubly occupied all
the time, whereas we consider all the possible distributions
of NAð¼ N − 2nCÞ electrons among nA active orbitals, to
take account of strong excitation and ionization.
It is also possible to further split the core space into frozen

core (FC) (fixedwith no response to the field) anddynamical
core (DC) (allowed to vary in time and respond to the field).
Let us use notations ðnFC; nDC; nAÞ for the TD-CASSCF
methodwith nFC FC orbitals, nDC DC orbitals, and nA active
orbitals. Note that ð0; 0; nÞ is equivalent to the multiconfi-
guration time-dependent Hartree-Fock (MCTDHF) method
[22–24] with n occupied orbitals. The equations of motion
for configuration-interaction coefficients and orbital func-
tions are derived, based on the time-dependent variational
principle [25–27]. See Ref. [19] for a detailed description of
the TD-CASSCFmethod and Ref. [20] for a broad review of
ab initio methods for multielectron dynamics.
In this study, we specifically consider a 1D Be model

atom (N ¼ Z ¼ 4) and a laser field with a sin2 envelope,

EðtÞ ¼ E0sin2
πt
T
sinωt ð0 ≤ t ≤ TÞ; ð3Þ

where T denotes a foot-to-foot pulsewidth. For all the results
presented in this work except for Figs. 4(b) and 5, we use
750 nm central wavelength, 5.2 × 1014 W=cm2 peak inten-
sity, and 22 optical-cycle foot-to-foot pulse width. Orbital
functions are discretized on 2048 equidistant grid points with
box size jxj < 400. We implement an absorbing boundary
by a cos1=4-shape mask function at 15% side edges of the
box. The time propagation is performed using 10 000 time
steps per optical cycle. We have also tested up to a 4 times
smaller grid spacing and a 6 times smaller time step, and
confirmed that the results remain virtually the same. The
initial ground state is obtained through imaginary-time
propagation. Harmonic spectra are calculated as the squared
magnitude of the Fourier transform of the dipole acceler-
ation. In order to reduce the background level of the spectra,
simulations are continued for some periods after the end
of the pulse, and the dipole acceleration after the pulse is
multiplied by a polynomial damping function.
Figure 2 shows HHG spectra calculated with three

different subspace decompositions schematically depicted
in Fig. 1. We assume that (0, 0, 10) is the most accurate.
The resulting spectrum (red thick curve in Fig. 2) exhibits
two remarkable features: (1) a second plateau and cutoff

around 150 eV beyond the first cutoff around 110 eV and
(2) a prominent peak at 30.6 eV, ∼103 times higher than the
plateau. Both are present also in the result for (0, 1, 9)
(black curve), whereas they are missing in that for (1, 0, 9)
(blue curve), which unambiguously indicates an essential
contribution from the core electrons.
In Table I we list, for Be, Beþ, and Be2þ, the ionization

potential Ip evaluated through Koopmans’ theorem, the
cutoff energy Ec by a common formula Ec ¼ Ip þ 3.17Up

with Up being the ponderomotive energy, and the barrier
suppression intensity IBS [15,28]. From the values of Ec in
this table, one notices that the first and second plateaus
in Fig. 2 are due to HHG from the cation and dication,
respectively. The neutral Be is immediately ionized and,
thus, does not contribute to the high-harmonic spectrum,
since its barrier suppression intensity (2.1 × 1013 W=cm2)
is much smaller than the laser peak intensity [29].
In order to further confirm this, we separate the total

harmonic spectrum into contributions from different charge
states. For this purpose, we calculate the contribution from

(a)   (0,0,10) (b)   (0,1,9) (c)   (1,0,9)

FIG. 1. Pictorial explanation of orbital subspace decomposi-
tions for Be used in this study. (a) MCTDHF (0, 0, 10) with ten
active orbitals, considered to be the most accurate, (b) CASSCF
(0, 1, 9) with one DC and nine active orbitals, and (c) CASSCF
(1, 0, 9) with one FC and nine active orbitals.
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FIG. 2. High-harmonic spectra from a 1D Be model atom
calculated with three different subspace decompositions depicted
in Fig. 1.
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the charge state qþ to dipole acceleration, or charge-state-
resolved dipole acceleration d̈q, conveniently defined as
(cf. Appendix of Ref. [19])

d̈qðtÞ≡
�
N

q

�Z
>
dx1 � � �

Z
>
dxq

Z
<
dxqþ1 � � �

Z
<
dxN

×Ψ�ðx1;…; xN; tÞẍΨðx1;…; xN; tÞ; ð4Þ
where

R
< (

R
>) denotes integration over a region jxj < X0

(jxj > X0) with X0 ¼ 20 a:u: in this study. The acceleration
operator ẍ is evaluated as described in Ref. [21]. In this
equation, we have omitted the summation with respect to
spin variables for simplicity. Whereas the contributions
from q ¼ 0; 3 are negligible, the first plateau is dominated
by the contribution from q ¼ 1, and the second plateau is
formed by the response of q ¼ 2 (Fig. 3).
The sharp peak in Fig. 2 suggests the presence of an

excitation resonance. Hence, we compare the HHG spectra
with excitation spectra of Be, Beþ, and Be2þ [Fig. 4(b)],
obtained by Fourier transform of the dipole response to a
quasi-delta-function pulse with a field being finite at a
single time step. One can clearly see that the first excitation
energy (30.6 eV) of Be2þ coincides with the peak position
in the harmonic spectrum. Also in Fig. 3, q ¼ 2 predomi-
nantly contributes to the peak. Therefore, both of the two
above-mentioned remarkable features originate from the
response of Be2þ.

In order to further investigate the contribution from
different species separately, we show in Fig. 4(a) HHG
spectra calculated by use of the MCTDHF method with ten
spatial orbitals starting from Be, Beþ, and Be2þ, respec-
tively. It should be noted that the curves for Beþ and Be2þ
in Fig. 4(a) are, unlike in Fig. 3, the results of the
simulations whose initial states are Beþ and Be2þ, respec-
tively. The spectra from Be and Beþ are similar, confirming
that the neutral species, immediately ionized, do not
contribute. On the other hand, if we start simulations from
Be2þ, no plateau but only up to the fifth harmonics are
observed; this is, in fact, reasonable if we note that the
laser intensity is much lower than the barrier suppression
intensity (Table I). In addition, although a peak at 30.6 eV,
related to the first excitation, can be seen, it is lower by
many orders of magnitude than in the spectrum from Beþ
and in Fig. 2. These observations imply the existence of a
mechanism to enhance the response of Be2þ.
In order to explore the effect of a rescattering electron

originating from Beþ, we have simulated high-harmonic
generation from Be2þ by adding a Coulomb field from the
rescattering electron,

Hrsc ¼
XN
i¼1

Z
ρðx0; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi − x0Þ2 þ 1
p dx0; ð5Þ
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FIG. 3. Charge-state-resolved harmonic spectra extracted from
the simulation starting from neutral Be and calculated as the
squared magnitude of the Fourier transform of Eq. (4). The total
HHG spectrum (the same as the red curve in Fig. 2) is also shown.

TABLE I. Ionization potential Ip (evaluated through Koop-
mans’ theorem), cutoff energy Ec, and barrier suppression
intensity IBS of each species.

Ip (eV) Ec (eV) IBS ( W=cm2)

Be 8.5 95.1 2.1 × 1013

Beþ 22.5 109.1 2.56 × 1014

Be2þ 65.4 152.0 8.12 × 1015
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FIG. 4. (a) High-harmonic spectra from 1D Be (thick solid red),
Beþ (thick dotted black), and Be2þ (dotted blue), respectively,
calculated with the MCTDHF methods with ten orbitals. The
spectrum from Be2þ in the field of the rescattering electron
Eq. (5) is also shown (thin dashed green). Note that simulations
have been started with Be, Beþ, and Be2þ, respectively, as an
initial state. The thick solid red curve (Be) is the same as that in
Fig. 2 and the thick solid black curve in Fig. 3. (b) Excitation
spectra of 1D Be, Beþ, and Be2þ, respectively, calculated through
excitation by a quasi-delta-function pulse. The highest peak is
located at 30.6 eVand corresponds to the first excited state of 1D
Be2þ. The gray vertical dashed line indicates the position of
30.6 eV.
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as an external field to the Hamiltonian for Be2þ, where
N ¼ 2, and ρðx; tÞ denotes the time-dependent probability
density of the Beþ active electron, which forms an
oscillating dipole and is calculated in a separate simulation
starting from Beþ with a frozen-core orbital (1, 0, 1). The
resulting spectrum is shown by the green dashed line in
Fig. 4(a). The comparison with the blue dotted line reveals
that Hrsc dramatically enhances the harmonic response of
Be2þ, including the peak at 30.6 eV, and almost recovers
that of Beþ. Whereas this mechanism is similar to enhance-
ment by an assisting harmonic pulse [30–33], the enhance-
ment is due to direct Coulomb force from the oscillating
dipole, rather than harmonics emitted from it. In the words
of the semiclassical three-step model, the recolliding
electron ejected from Beþ lifts Be2þ to the first excited
state, which subsequently emits a photon to form the peak
at 30.6 eV, and, at the same time, facilitates tunneling
ionization, enhancing harmonic emission in the second
plateau. The nonresonant components of the oscillating
dipole also lead to virtual excitation and facilitate tunneling
ionization of Be2þ. Thus, electron-electron interaction
plays an essential role in the generation of the second
plateau and the peak at 30.6 eV.
It is expected from this scenario that photons at the

peak are emitted at any time within an optical cycle while
those in the first and second plateaus are emitted upon
recombination of the rescattering electrons, the second
plateau being delayed by a half cycle with respect to the
first one. These are confirmed by Fig. 5, which shows
the time-frequency analysis of HHG from Beþ by a
5.2 × 1014 W=cm2 flattop pulse with a half-cycle ramp-
on. We can recognize typical arcs corresponding to the first
(from Beþ) and second (from Be2þ) plateaus from the
second and third half cycle, respectively. On the other
hand, as expected, we see constant strong emission around
30 eV, which indicates that it is not due to recombination.
A non-Born-Oppenheimer study on molecules [34], using
the nuclear dynamics as a clock, may help disentangle these
processes even more clearly.
The processes leading to the harmonic spectrum shown

in Fig. 2 are summarized as follows. The laser intensity is
so high that the neutral Be is completely depleted in the
early stage of the pulse and hardly contributes to the
spectrum. Beþ plays a dominant role in the formation of
the first plateau and cutoff. Unexpectedly, the rescattering
electron emitted from Beþ does not only contribute to the
first plateau but also greatly enhances the response of Be2þ,
which leads to the formation of the sharp peak at 30.6 eV
and the second plateau. It should be emphasized that, in
contrast to resonance-induced enhancement mechanisms
previously reported [15,16], the peak is not related to the
resonant excitation of Beþ but to that of Be2þ.
In conclusion, we have investigated high-harmonic

generation from a 1D Be model atom using the all-electron
TD-CASSCF method. In addition to the main plateau

formed by HHG from Beþ, we have found two prominent
features: a second plateau and a peak that is ∼103 times
higher than the main plateau. Thanks to flexible subspace
divisions characteristic of the TD-CASSCF method, we
have identified them as originating from Be2þ. However,
this response of Be2þ produced via tunneling ionization of
Be and Beþ is totally different from that in the case where
Be2þ is put under irradiation from the beginning. The
recollision of the electron ejected from Beþ leads to
dramatic enhancement of the response of Be2þ by exciting
it and largely facilitating subsequent tunneling ionization.
Thus, electron correlation plays an essential role in the
appearance of the prominent peak and second plateau.
Although we have specifically treated a 1D Be model atom,
HHG enhancement by electron correlation as revealed here
is presumably common to any 3D real target atoms and
molecules. Whereas a resonance peak may be hidden under
the main plateau, the enhancement of an extended plateau
is expectedly more easily observable. The present study
will open a new possibility to study multielectron effects
and electron correlation using high-harmonic generation,
which is usually considered a predominantly single-
electron process.
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