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We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion
around the unitarity limit, where the two-nucleon Swaves have bound states at zero energy. In this limit, the
gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is
related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding
energy. Observables are moved to their physical values by small perturbative corrections, much like in
descriptions of the fine structure of atomic spectra. We provide evidence in favor of the conjecture that
light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the
interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.
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For the purposes of nuclear physics, QCD, the theory of
strong interactions, has essentially two independent param-
eters, namely the up and down quark masses. Their average
controls the pion mass and consequently, the range of the
nuclear force R ∼M−1

π ≃ 1.4 fm. Their difference, plus
electromagnetism, generates small differences in masses
and interactions between neutrons and protons. At the
physical point, the two-nucleon (NN) scattering length in
the 3S1 channel is at ≃ 5.4 fm, with the deuteron as a
shallow bound state (BD ≃ 2.224 MeV); in the 1S0 channel,
as ≃ −23.7 fm, and a shallow virtual bound state exists at
BNN� ≃ 0.068 MeV.With relatively small changes in quark
masses, these states become, respectively, unbound and
bound [1–4]. In the physics of cold atoms near Feshbach
resonances, externalmagnetic fields play a role similar to the
quark masses and allow the scattering length to be tuned
arbitrarily [5].
Approximate correlations BD;NN� ≈ 1=ðMNa2t;sÞ, with

MN ≃ 940 MeV the nucleon mass, hold because the size
of all these scales is unnatural compared to the typical
interaction range R. The NN system therefore appears close
to the unitarity (or unitary) limit, where both states cross zero
energy, the scattering lengths become infinite (1=at;s ¼ 0),
and cross sections saturate the unitarity bound. It has indeed
been suggested that this happens not far from the physical
point [6]. While this presumed proximity has been discussed
qualitatively for a long time, it has traditionally not played any
special role in constructing nuclear forces, and it is neither
assessed nor exploited in order to simplify the description of
nuclei. As an exception, Refs. [7,8] use potential models to
map out correlations between observables in three- and four-
nucleon systems as the limit is approached at fixed at=as.

Here, we argue that the typical particle binding momen-
tum QA of the A-nucleon system satisfies 1=as;t < QA <
1=R so that a combined expansion in QAR and 1=ðQAas;tÞ
converges quickly and quantitatively reproduces the physi-
cal systems. With this, the gross features of states in the
nuclear chart are determined by a very simple leading-order
interaction (governed by a single parameter), whereas,
much like the fine structure of atomic spectra, observables
are moved to their physical values by small perturbative
corrections. Our conjecture places nuclei in a sweet spot:
bound weakly enough to be insensitive to the details of the
interaction but dense enough to be insensitive to the exact
values of the large two-particle scattering lengths. One
might surmise that due to the absence of scales, a theory at
the unitarity limit allows only for trivial observables, like
bound states with zero or infinite energies. However, the
nontrivial renormalization of the three-body system intro-
duces, instead, exactly one new dimensionful parameter,
which sets the scale for all few-body observables. Indeed,
the energies of bosonic clusters near unitarity are deter-
mined in terms of the trimer energy [9,10].
In the following, we provide explicit evidence that our

conjecture holds for the binding energies of three and four
nucleons. Since the NN binding energies are small, their
dynamics is dominated by large distances and small
momenta, the regime of the effective range expansion
(ERE) [11]. Its consequences are captured by an effective
field theory (EFT) which, apart from long-range electro-
magnetic interactions mediated by photons (Aμ), contains
only contact interactions between nonrelativistic nucleon
isospin doublets N ¼ ðpnÞT of proton and neutron fields.
Following the notation of Ref. [12], its Lagrange density is
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C0;iðNTPiNÞ†ðNTPiNÞ þD0ðN†NÞ3 þ � � � ;

ð1Þ

where Dμ ¼ ∂μ þ ieAμð1þ τ3Þ=2, e is the proton charge,
τa a Pauli matrix in isospin space, and Pi projectors onto the
NN S waves. C0;i and D0 are “low-energy constants”
(LECs), determined from QCD or experiment. This
“Pionless EFT” reproduces the ERE in the NN sector
[13–17] but extends it to an arbitrary number of particles
and interactions with external fields. The two-body inter-
actions with LECs C0;i are related to as;t, while higher-
derivative interactions are associated with the effective
ranges and higher ERE parameters, as well as higher partial
waves. The organizational principle (“power counting”)
attributes the C0;i to nonperturbative leading order (LO)
and higher-derivative interactions to subleading orders.
These are added perturbatively and include the effects of
the interaction range R in a systematic expansion in
QR ≪ 1, where Q is a typical low-momentum scale.
Stability of light nuclei results from an additional LO

interaction, a single nonderivative three-nucleon (3N)
contact interaction [18–20], with LEC D0. Derivative
corrections to this 3N interaction start at next-to-next-to-
leading order (N2LO) [19,21–24]. Little is known about the
orders at which higher-body interactions appear, except that
they are not LO [10,25–34]. Based on a zero-range model,
Refs. [35–37] report some sensitivity of four-body energies
to a four-body scale, but these results do not contradict
the absence of a four-body interaction at LO in Pionless
EFT. The absence of an essential four-body parameter has
also been verified in the context of potential models with a
short range [38–41] and of renormalization-group analyses
[42–44]. As a consequence, the 3N LO strength parameter
Λ⋆, together with the LO two-body interactions, determines
the spectrum and scattering for systems with more particles
[10,25–34,45,46]. This single relevant 3N parameter gen-
erates correlations among few-body observables such as the
Phillips [47] and Tjon [48] lines.
The standard pionless formulation with finite scattering

lengths as a LO input explicitly breaks two important
symmetries: first, the SUð4ÞW Wigner symmetry of com-
bined spin and isospin transformations [49] is broken in the
two-body sector for at ≠ as [50], while it is obeyed by the
3N interaction [20]. Second, discrete scale invariance leads to
the log-periodic shape of the running coupling D0 [18–20]
and to an infinite geometric tower of Efimov states in the
three-body system [51], both determined by the 3N LO
strength parameterΛ⋆ [see Eq. (5) below]. It too is broken for
as;t ≠ ∞. (Note that in contrast to Refs. [5,51,52], scattering
lengths are not rescaled with the discrete scaling factor here.)
The unitarity limit manifestly respects both symmetries

and has Λ⋆ left as a single parameter. In our calculation, this

is fixed at LO to reproduce the physical triton (degenerate
with 3He at this order) as one of the Efimov states. In fact, the
3N and 4N systems in the unitarity limit decouple into a
symmetric piece, identical to a formulation of three- and
four-boson systems and an antisymmetric piece. At unitarity,
a three-boson Efimov state with binding energy B3 is
associated with two four-boson states [28]—one relatively
deep at B4=B3 ≃ 4.611 and one barely below the particle-
trimer threshold, B4�=B3 ≃ 1.002 [40]. For the α particle, the
ground state is at Bα=BH ≃ 3.66 and the excited state at
Bα�=BH ≃ 1.05, where BH ≃ 7.72 MeV is the 3He binding
energy. In addition, models (see, e.g., Ref. [53]) indicate the
existence of a virtual 3N state atBT� ≲ 0.5 MeV for physical
scattering lengths, which becomes the second Efimov state as
BD is decreased. Thus, the 3N and 4N spectra are consistent
with mildly broken discrete scale invariance, suggesting a
perturbative treatment, described below.
For the calculation, the LO two-body potentials derived

from Eq. (1) are written as

Vð0Þ
2 ¼

X
i

Cð0Þ
0;i jiijgihgjhij; ð2Þ

where jii collects the spin-isospin structure and jgi imple-
ments a separable regularization. With p the momentum
corresponding to the kinetic energy E in the NN center-
of-mass system, gðpÞ≡ hpjgi satisfies gð0Þ ¼ 1 and
gðp ≫ ΛÞ ≪ 1 for arbitrary cutoff Λ. The results shown
belowhave been obtainedwith two different implementations
of the theory. For the 3He calculation, we follow Ref. [12],
which uses a sharp cutoff (step function) regulator gsðpÞ ¼
θðΛ − pÞ and includes the two-body interactions through
dibaryon auxiliary fields, in lieu of Eq. (2). Our new Faddeev
(-Yakubovsky) calculations use a convenient Gaussian
regulator instead, gGðpÞ ¼ expð−p2=Λ2Þ. Since only the
LO calculationmandates a nonperturbative treatment, we use
(distorted-wave) perturbation theory for higher orders; i.e.,
NLO results depend only linearly on NLO contributions.
These are (i) terms as in Eq. (2) accounting for LEC shifts

Cð0Þ
0;i → Cð1Þ

0;i , corresponding to the expansion C0;i ¼ Cð0Þ
0;i þ

Cð1Þ
0;i þ � � � and shifting to the physical values of as;t, (ii) one

Coulomb interaction ∼e2MN=ð4πQÞ in the pp channel,
(iii) one isospin-breaking contact interaction in the pp

channel as in Eq. (2), with Cð0Þ
0;s → ΔCð1Þ

0;s;pp, required for
proper renormalizationofCoulombeffects, and (iv) one range
correction per NN S wave.
In order to treat Coulomb effects in the 3N sector

perturbatively, Ref. [12] expanded the 1S0 channel around
the unitary limit. Here, we also expand the 3S1 channel in
1=ðQ3atÞ, which is a significantly more radical simplifi-
cation, given that at is not nearly as large as as. The two-
body amplitude is a geometric series that can be resummed
analytically for a separable regulator. We remove the
arbitrary Λ dependence from observables by demanding
that the two inverse scattering lengths vanish at LO and
enter linearly at NLO. Renormalization is achieved if
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Cð0Þ
0;i ¼

−2π2

MNΛ
θ−1; Cð1Þ

0;i ¼
MN

4πai
Cð0Þ2
0;i ; ð3Þ

where θ ¼ R
dqg2ðqÞ=Λ is a regulator-dependent pure

number. The LO amplitude takes then the scale invariant

form Tð0Þ
i ðEÞ ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−MNE − iε

p
, with NLO corrections

proportional to Cð1Þ
0;i . The deuteron binding energy vanishes

up to NLO, but ðBDÞN2LO ¼ 1=ðMNa2t Þ≃ 1.41 MeV coin-
cides with the standard zero-range value. For more details,
see Ref. [54].
A 3N potential is needed at LO for renormalizability,

i.e., to avoid the Thomas collapse [55] and ensure that
three-body observables have a well-defined limit for
Λ ≫ 1=R [18–20]. We choose a separable form

Vð0Þ
3 ¼ Dð0Þ

0 j3Hijξihξjh3Hj; ð4Þ

where j3Hi denotes the projector onto the J ¼ S ¼ T ¼
1=2 3N state and jξi the regulator, either sharp or
hu1u2jξi ¼ gGð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ 3u22=4

p
Þ for Jacobi momenta u1;2.

We take the triton binding energy as the one observable

needed to fix Dð0Þ
0 ðΛÞ.

An a priori estimate of the typical A-body scale equi-
distributes the total binding energy amongst its constituents,
i.e., QA ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MNBA=A

p
. For three nucleons, Q3 ≈ 70 MeV

appears indeed in the sweet spot, namely larger than1=as;t ≲
45 MeV but smaller than the breakdown scale of Pionless
EFT (expected to be about 140 MeV). We thus compare the

running of Dð0Þ
0 at full-unitarity LO with the result of

standard pionless LO (scattering lengths at their physical
values) and of 1S0 unitarity [12]. Taking the same sharp-
momentum regulator, all three cases agree well with the
log-periodic form [18–20]

Dð0ÞðΛÞ ∝ 1

Λ4

sin (s0 logðΛ=Λ�Þ − arctan s−10 )

sin (s0 logðΛ=Λ�Þ þ arctan s−10 )
; ð5Þ

where s0 ≃ 1.00624. The proportionality factor is scheme
and regulator dependent. We findΛ� ¼ 175, 168, 234 MeV
for standard Pionless EFT, 1S0 unitarity, and full unitarity,
respectively. The changes at 1S0 and full unitarity go in
opposite directions since the 1S0 interaction is more attrac-
tive at unitarity than for the physical scattering length as the
LO input, while the 3S1 interaction is less attractive.
At NLO, the 3N interaction has the same form as in

Eq. (4), with Dð0Þ
0 → Dð1Þ

0 chosen to keep the triton energy
unchanged. As a nontrivial check, we repeat the 3He
calculation of Ref. [12] with a full-unitarity LO and add
finite 1=as;t plus one-photon exchange and its counterterm
as NLO corrections. Figure 1 shows excellent agreement,
with only small differences to 1S0 unitarity. Convergence
with the cutoff is evident.We predict a triton-helion splitting
ðBT − BHÞNLO ≃ ð0.92� 0.18Þ MeV, compared to the
experimental value ðBT − BHÞexp ≃ 0.764 MeV. Our 20%

error estimate follows Ref. [12] and is larger than the
additional O(1=ðQ3atÞ2) from the new expansion.
At full unitarity, the LO spectrum consists of a series of

states spaced by a factor of expð2π=s0Þ ≈ 515 [51]. An
infinite number of states shallower than the triton/helion
accumulates at zero energy. These lie outside the range of
applicability of our expansion since their typical momenta
are not large compared to 1=jas;tj. Nevertheless, looking at
their perturbative shifts, we find that at NLO they remain an
order of magnitude shallower than the N2LO deuteron, and
generally, we expect them to disappear above threshold at
N2LO. In addition, with increasing cutoff, deeper 3N states
enter the spectrum with binding momenta well above 1=R.
These are well outside the range of validity of the EFT
and thus not a fundamental issue, but they complicate the
numerical solution of the 4N problem. For now, we restrict
our 4N calculations to a Λ range in which these are absent.
For simplicity, we neglect electromagnetic and range
corrections at NLO, focusing on the 1=ðQ4atÞ expansion.
Our 4N calculation follows Refs. [25–27] (based, in turn,

on Ref. [56]), with an independently developed numerical
implementation. We include a sufficient number of angular
components to ensure numerical convergence; see a
subsequent publication for details [57].
Figure 2 shows results for the α-particle binding energy

BαðΛÞ. They are well fitted with a quadratic polynomial in
1=Λ for large Λ, which we therefore use to extrapolate
Λ → ∞. For standard Pionless EFT at LO, they are
consistent with Refs. [25–27]. Implementing the unitarity
limit at LO leads to about 10 MeV more binding, as
expected from a more attractive 3N interaction. We find a
bound excited state just below the proton-triton breakup
threshold, in contrast to 0.3 MeV above, as indicated by
experiment. The LO results ðBα=BTÞLO ¼ 4.66 for the
ground and ðBα�=BTÞLO ¼ 1.002 for the excited state of
4He agree with four-boson unitarity [27,28,40].
Remarkably, the first 1=ðQ4atÞ correction brings us very

close to the standard Pionless EFT result. That is perhaps
accidental due to the highly symmetrical nature of the α

FIG. 1. Three-nucleon binding energies at NLO as a function of
the 3N sharp cutoff. (Red) dashed curves: results of Ref. [12],
keeping the physical at at LO. (Green) solid curves: effect of
taking both S waves to the unitarity limit at LO and then
including the physical values perturbatively at NLO, along with
one-photon exchange and its counterterm. Horizontal lines:
experimental values. Top (bottom) lines: 3He (3H, fitted).
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particle, the level of agreement in the helion being perhaps
more representative. All results in Fig. 2 are uncorrected for
electromagnetic and range effects. At present, no calcu-
lation of these effects in Pionless EFT exists, except for
Ref. [46], where higher orders were, however, not treated
perturbatively. With the uncertainty expected to be domi-
nated by range corrections Oðrs;t=as;tÞ≃ 30%, we obtain
ðBαÞNLOðr¼0Þ ¼ 29.5� 8.7 MeV with zero effective ranges.
The ratio ðBα=BTÞNLOðr¼0Þ ≈ 3.48 is in good agreement
with ðBα=BTÞexp ¼ 3.34.
While slow convergence for the excited-state wave

function puts its full NLO calculation beyond our current
computational resources, we used a four-boson model
tuned such that its LO is similar to the 4He system, namely
choosing B3 ¼ 8.5 MeV. Since the four-boson and 4N
systems are identical for exact SUð4ÞW symmetry, this is an
adequate rendering of the more complex physical world.
Calculations with a2 ¼ 20 fm and a2 ¼ 5 fm (covering the
range of typical nuclear scales) indicate that first-order
perturbations in 1=a2 indeed push the state at B4� ≳
8.5 MeV above threshold by about 0.2 and 0.5 MeV for
a2 ¼ 20 and 5 fm, respectively. That corresponds to
ðB4�=B3ÞNLOðr¼0Þ in the range 0.94…0.98, compared to
ðBα�=BTÞexp ¼ 0.96. The four-body excited state and the
particle-trimer threshold are close, but both are still far from
the four-particle threshold; it is reassuring that we can
improve the description of the excited state at NLO.
As a final test, Fig. 3 shows the Tjon line, i.e., the

correlation between 3N and 4N binding energies, obtained
by varying Λ�. All results are calculated with jmax ¼ 3=2 in
the 4N system and use the Λ → ∞ extrapolation discussed
above. The extrapolation uncertainty is negligible com-
pared to the 30% estimated EFT truncation error. The
remarkable agreement in Fig. 2 persists off the physical

point, providing further evidence of the power of a
perturbative expansion around the unitarity limit. The
relation between triton and 4He binding energies is still
nearly perfectly linear at NLO.
Our results suggest good convergence of the expansion

around unitarity, both order by order and to real-
world values. While the condition QAR < 1 is better
satisfied for lighter systems, it may provide at least
qualitative insight into the binding mechanisms of even
the heaviest nuclei (BA=A ≈ 8 MeV). Indeed, the rate of
convergence in observables provides ample evidence that
Q3R is much smaller than its a priori estimate, see, e.g.,
Refs. [12,21,23,58–61], and is suggestive that Q4R is
smaller, too [29,32,46]. There is also circumstantial evi-
dence that this may hold for A > 4 [10].
A recent expansion around the SUð4ÞW limit, with the

averaged physical values of the ERE parameters at LO,
found good convergence for 3N binding energies and radii
[62]. Together with the fact that SUð4ÞW has some success
in heavier nuclei (see, e.g., Refs. [63,64] and references
therein), this adds further credibility to our conjecture.
In the future, we will investigate our expansion in heavier
nuclei, such as the isoscalars 16O [34] and 6Li [45],
including observables beyond binding energies, for exam-
ple, electromagnetic form factors. For nuclear matter,
saturation energies and densities are correlated (Coester
line) [65] and conjectured to be correlated to the 3N
binding energy [66]. In the unitarity limit, this can be
understood from discrete scale invariance [67].
In summary, we demonstrated that the physics of A ≤ 4

nucleons is governed to a good first approximation by a
single parameter Λ�, with controlled corrections stemming
from deviations from unitarity, the interaction range, and
isospin-breaking effects. We conjecture that it also con-
verges for other light nuclei and speculate about its
relevance for heavy nuclei and nuclear matter. It may
not be a surprise that our results in the unitarity limit are
perturbatively close to those where the physical scattering
lengths are used at LO. Surprising is, however, how well
the expansion appears to converge. Our expansion turns the

FIG. 3. Tjon line: correlation between the 4He and 3H binding
energies. (Blue) solid curve: standard pionless LO result; (green)
dashed upper curve: unitarity limit at LO. Additional points
nearly on top of the blue curve: inverse scattering lengths as first-
order perturbation. Star: experimental point.

FIG. 2. 4He binding energy as function of the Gaussian cutoff.
(Blue) solid and (green) dashed lines: standard Pionless EFT
and full unitarity at LO, respectively, with partial waves up to
jmax ¼ 3=2. (Blue) dot-dashed and (green) dotted line: same for S
waves only (lmax ¼ 0). (Green) diamonds (lmax ¼ 0) and circles
(jmax ¼ 3=2): first-order corrections in 1=as;t are added. Results
for jmax ¼ 2 are almost identical to jmax ¼ 3=2 and not shown.
Large symbols on right edge: Λ → ∞ extrapolation (see text).
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focus away from details of the two-body system, which has
traditionally been taken as a starting point to the structure
of higher-body bound states, and shifts it to a three-body
interaction that underlies systems around unitarity [5,9,10].
That adds the intriguing possibility that the approach
developed here for nucleons may prove successful also
in atomic and molecular physics, where finite scattering
lengths are currently treated nonperturbatively.
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