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We give a capacity formula for the classical information transmission over a noisy quantum channel, with
separable encoding by the sender and limited resources provided by the receiver’s preshared ancilla. Instead
of a pure state, we consider the signal-ancilla pair in a mixed state, purified by a “witness.” Thus, the signal-
witness correlation limits the resource available from the signal-ancilla correlation. Our formula characterizes
the utility of different forms of resources, including noisy or limited entanglement assistance, for classical
communication. With separable encoding, the sender’s signals across multiple channel uses are still allowed
to be entangled, yet our capacity formula is additive. In particular, for generalized covariant channels, our
capacity formula has a simple closed form. Moreover, our additive capacity formula upper bounds the general
coherent attack’s information gain in various two-way quantum key distribution protocols. For Gaussian
protocols, the additivity of the formula indicates that the collective Gaussian attack is the most powerful.
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Communication channels model the physical medium
for information transmission between the sender (Alice)
and the receiver (Bob). Classical information theory [1,2]
says that a channel is essentially characterized by a single
quantity—the (classical) channel capacity, i.e., its maxi-
mum (classical) information transmission rate. However,
quantum channels [3] can transmit information beyond the
classical. Formally, a (memoryless) quantum channel is a
time-invariant completely positive trace preserving (CPTP)
linear map between quantum states. Various types of
information lead to various capacities, e.g., classical capac-
ity C [4,5] for classical information transmission encoded in
quantum states, and quantum capacityQ [6–8] for quantum
information transmission. For both cases, implicit con-
straints on the input Hilbert space, e.g., fixed dimension
or energy, quantify the resources. Resources can also be in
the form of assistance: given unlimited entanglement,
one has the entanglement-assisted classical capacity CE
[9]. References [10,11] provide a capacity formula for the
trade-off of classical and quantum information transmission
and entanglement generation (or consumption).
With the trade-off capacity formula in hand, it appears that

the picture of communication over quantum channels is
complete. However, our understanding about the trade-off is
plagued by the “nonadditivity” issue [3], best illustrated by
the example of C. The Holevo-Schumacher-Westmoreland
(HSW) theorem [4,5] gives the one-shot capacity Cð1ÞðΨÞ of
channel Ψ, which assumes product-state input in multiple
channel uses. Consider the tensor product channel Ψ⊗M. It
may have one-shot capacity Cð1ÞðΨ⊗MÞ > MCð1ÞðΨÞ since it
allows the input state of Ψ⊗M to be entangled across the M
channel uses of Ψ (the M shot). CðΨÞ is then given by the

regularized expression as limM→∞Cð1ÞðΨ⊗MÞ=M, which is
difficult to calculate since the dimension of the input states of
Ψ⊗M is exponential in M. If we have the additivity property
Cð1ÞðΨ⊗MÞ ¼ MCð1ÞðΨÞ, the formula of the capacity is
greatly simplified, i.e., CðΨÞ ¼ Cð1ÞðΨÞ. However, both C
[12] and Q [13] are known to be nonadditive. Without
additivity, quantification of the trade-off is, in general,
infeasible.
An exception is the (unlimited) entanglement-assisted

classical capacity CE [9]. Since it has the form of quantum
mutual information [14,15], CE is additive [9,16]. One
immediately hopes that the additivity can be extended to
classical communication assisted by imperfect entanglement
since entanglement is fragile.Many such scenarios have been
explored, e.g., superdense coding (SC) over a noisy channel
assisted by noisy entanglement [17–22], a noiseless channel
assisted by a noisy entanglement [23], and noisy channels
assisted by limited pure state entanglement [24]. However,
all of the results are, in general, nonadditive, as expected
[25], since the above imperfect scenarios include the casewith
zero entanglement assistance—the nonadditive C.
In this Letter, we obtain an additive classical capacity

formula for a noisy quantum channelΨ assisted by resources
such as noisy entanglement. In the most general formalism,
Alice sends an optimized ensemble of (possibly mixed)
states ρiSE to Bob, with a signal S through the channel Ψ and
an ancilla E preshared through the identity channel I . Each
ρiSE is constrained by some resource, e.g., by the entangle-
ment between S and E. Here, similar to SC, we consider a
restricted scenario of two-step signal preparation—resource
distribution and encoding (see Fig. 1). Each ρiSE is obtained
by encoding on S from a certain state ρSE. Moreover, the
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resource is constrained by the correlation between S and a
“witness” W—a purification of ðS; EÞ.
In the resource distribution step, W is made inaccessible

to both Alice and Bob. Instead of explicitly quantifying the
available resource (between S and E) as in Ref. [24], we
describe the resource implicitly by quantifying the corre-
lation between S and W—the unavailable resource—by
K ≥ 1 inequalities

QkðρSWÞ ≥ yk; k ∈ ½1; K� ð1Þ

on ρSW , where each Qkð·Þ is a function on bipartite states.
We denote Eq. (1) by QðρSWÞ ≥ y. While Refs. [9,24]
considered only pure state entanglement, the form of
resources in our case can be arbitrary by choosing different
Qkð·Þ’s, e.g., noisy entanglement, cross-correlation
[26–28], or quantum discord [29]. However, entanglement
measures are more meaningful to consider because (1) they
respect the unitary equivalence of the purification W, and
(2) constraints on the entanglement between S and W lead
to constraints on the entanglement between S and E—a
property known as monogamy [26,30–32].
Here, we give an example of Eq. (1)—the quantum

mutual information [14,15] IðS∶WÞ ≥ y, y ∈ ½0; 2log2d�
for qudit S. When y ¼ 2 log2 d, ρSW is pure and E and S
are thus uncorrelated. Since entanglement across multiple
channel uses is also excluded here, the additivity of our
capacity does not contradict the nonadditivity of C. When
y ¼ 0, the optimum has W and S in a product state and ρSE
pure, as in Ref. [24]. This gives the case of Ref. [9]. For
intermediate values of y, ρSE is mixed and signals across
multiple channel uses can be entangled; thus, the additivity
of our capacity is nontrivial. This example illustrates the
desired property of function Qkð·Þ—the correlation between
S and W increases when Qkð·Þ increases, with the two end
points corresponding to ρSW pure and product states.
In the encoding step, Alice performs a quantum oper-

ation εx [33] with probability PXðxÞ on S to encode a
message x, resulting in S0 as the input to Ψ. In multiple
channel uses, the encoding is a set of classically correlated
separate operations—local operations and classical com-
munication (LOCC) [34]. ρS is constrained to be in
BðHSÞ—density operators on Hilbert space HS—and the
encoding is constrained to be in a certain set, i.e.,
(PXð·Þ; ε:) ∈ G. Upon receiving Ψ0s output B, Bob makes
a joint measurement on B and E to determine x. The
capacity of the above scenario is given as follows.

Theorem 1.—Classical capacity with limited resources
and LOCC encoding. With resources constrained by
V ≡ f(PXð·Þ; ε:) ∈ G; ρS ∈ BðHSÞ;QðρSWÞ ≥ yg, suppos-
ing thatG allows arbitrary phase flips, the classical capacity
of the quantum channel Ψ is

χLðΨÞ ¼ max
V

S

�X
x

PXðxÞΨ∘εx½ρS�
�

−
X
x

PXðxÞEΦεx⊗I ½ρSW �; ð2Þ

whereΦεx is the complementary quantum operation toΨ∘εx,
the entropy gain Eϕ [35] of a CPTP map ϕ on state ρ is
defined by Eϕ½ρ�≡ Sðϕ½ρ�Þ − SðρÞ, and the maximization is
over the encoding (PXð·Þ; ε·) and ρSW . Equation (2) is
additive when the constraint has a separable form on each
channel use and the encoding is LOCC.
We make two clarifications about the theorem. First, a

schematic of Φεx is given in Fig. 1. The encoding CPTP
map εx is extended to a unitary operation Ux on S and an
environment C in the vacuum state, resulting in S0 in state
εx½ρS� and C0. S0 is sent to Bob through Ψ, whose
Stinespring dilation is a unitary operation UΨ on S0 and
an environmentN in the vacuum state, producing B for Bob
and an environment N0. We define Φεx as the CPTP map

from ρS to ρðxÞN0C0 , given εx. Second, by a separable form of
constraints on each channel use, we mean constraints
expressed by a set of inequalities, each involving states
only in a single channel use [see Eq. (3)].
We have given our main result, Theorem 1, in a single

channel use scenario. In order to prove additivity, we need
to consider multiple channel uses (Fig. 2). Before that, we
will make a few more comments. First, for generalized
covariant channels, including covariant [36] channels and
Weyl-covariant [37] channels, Eq. (2) can be simplified.
More details are given in Corollary 2.
Next, we discuss the relationships with other capacities.

If G allows arbitrary encoding, one can choose to
replace the original signal state with an optimal set of

FIG. 1. Schematic of a single channel use.

FIG. 2. Schematic of M channel uses.
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pure states, which guarantees that χL ≥ Cð1Þ. With all
encoding operations unitary, we obtain another lower
bound, χIL. When the yk’s are at maximum, χL ¼ Cð1Þ;
when the yk’s are at minimum, χL ¼ CE. Note that when
arbitrary phase flips are not allowed, the rhs of Eq. (2)
upper bounds χL and it is still additive, while χL might not
be. We also point out that Ref. [24] and our result are
different in the sense that neither of them can be reduced to
the other. If the εx’s are not unitary, then the environment C0
is never sent to Bob. This is different from Ref. [24], where
all purification of the signal is sent to Bob. If we require εx’s
to be unitary, the input states in Ref. [24] do not need to be
related by unitary operations, unlike our scenario [42].
Finally, we emphasize the application of our results. Our

capacity formula provides an additive upper bound for the
general eavesdropper’s coherent attack [38–41] informa-
tion gain for various two-way quantum key distribution
(TW-QKD) protocols [28,51–60]. The constraint in Eq. (1)
appears in security checking of TW-QKD protocols, where
two parties verify properties of their state ρSW’s to constrain
the eavesdropper’s benefit from ðS; EÞ (details in Corollary
3). Obtaining upper bounds for eavesdroppers in TW-QKD
is more complicated than for one-way protocols due to the
simultaneous attack on both the forward and backward
channels. Only special attacks [52–57] or general attacks in
the absence of loss and noise [58–60] have been consid-
ered. Despite this difficulty, a TW-QKD protocol called
“floodlight QKD” was recently shown to have the potential
of reaching an unprecedented secret key rate (SKR)
[28,51]. Consequently, our upper bound is crucial for a
high-SKR QKD.
Multiple channel uses.—Now we extend the single

channel use scenario to M ≥ 2 channel uses in a nontrivial
way that allows an additive classical capacity (Fig. 2). We
keep the same notation for all of the modes except for adding
a subscript to index the channel use. For convenience, we
introduce the short notation S ¼ fSm∶m ∈ ½1;M�g for input
signals, with its states ρS ∈ BðH⊗M

S Þ, and also W as an
arbitrary inaccessible witness and E as an arbitrary ancilla.
Then the initial state ðS;E;WÞ is pure.
The allowed encoding operations in M channel uses are

LOCC; i.e., they can be classically correlated, satisfying a
joint distribution PXð·Þ, where X ¼ ðX1;…; XMÞ denotes
the symbols inM channel uses. Conditioned on the message
x≡ ðx1;…; xMÞ, the encoding operation is εx ¼⊗M

m¼1 εxm .
Again, the CPTP map εx can be extended as a unitary
operation ⊗M

m¼1 Uxm , which takes in the signals S and the
environment C ¼ fCm∶m ∈ ½1;M�g in the vacuum state
and produces the encoded signals S0 ¼ fS0m∶m ∈ ½1;M�g
and the environment C0 ¼ fC0

m∶m ∈ ½1;M�g. Each encod-
ing operation εxm , with its own marginal distribution PXm

ð·Þ,
is still constrained to be inside the same set G.
After the encoding step, each S0m is sent through Ψ

separately. The Stinespring dilation of Ψ⊗M takes S0 and an
environment N ¼ fNm∶m ∈ ½1;M�g in the vacuum state

as inputs and outputs B ¼ fBm∶m ∈ ½1;M�g for Bob and
the environment N0 ¼ fN0

m∶m ∈ ½1;M�g. Bob decodes the
message by joint measurements on ðB;EÞ, where the
preshared ancilla E provides resources quantified by
the constraint QðρSmWÞ ≥ y, m ∈ ½1;M�. One can also
consider that M witnesses W ¼ fWm∶m ∈ ½1;M�g, with
constraints on each signal-witness pair,

QðρSmWm
Þ ≥ y; m ∈ ½1;M�: ð3Þ

Note that both constraints have a separate form on each
channel use, allow entanglement between Sm’s across
channel uses when y is not at maximum, and give the
same additive capacity formula in Theorem 1 [42].
Proof of Theorem 1.—With the M-channel-use scenario

established, we now prove Theorem 1. The one-shot
classical capacity of the product channel Ψ ⊗ I for
ðS0; EÞ is given by a constrained version of the HSW
theorem,

χLðΨÞ ¼ max
V

�
SðρBEÞ −

X
x

PXðxÞSðρðxÞBEÞ
�
; ð4Þ

where the maximization is over the encoding (PXð·Þ; ε:)
and the source ρSW is constrained by V, and ρðxÞBE ¼
ðΨ∘εxÞ ⊗ I ½ρSE�, with ρBE ¼ P

xPXðxÞρðxÞBE. Because
ðS; E;WÞ and N, C are pure, SðρEÞ ¼ SðρSWÞ; it also
follows that ðB;E;W;N0; C0Þ is pure, conditioned on x.

Thus, SðρðxÞBEÞ ¼ SðρðxÞN0C0WÞ. Using the subadditivity of von
Neumann entropy on SðρBEÞ and combining the above
equalities,

χLðΨÞ ≤ χUBL ðΨÞ

≡max
V

�
SðρBÞ −

X
x

PXðxÞ½SðρðxÞN0C0WÞ − SðρSWÞ�
�
: ð5Þ

Noticing that Φεx maps S to N0C0, Eq. (5) can be
expressed as χUBL ðΨÞ ¼ maxVF½ρSW; (PXð·Þ; ε:)�, where

F½ρSW; (PXð·Þ; ε:)�≡ SðρBÞ −
X
x

PXðxÞEΦεx⊗I ½ρSW �: ð6Þ

It is subadditive since Eϕ is superadditive [42].
Now we switch to the M-channel-use scenario to prove

additivity. If we adopt constraint (3), the overall constraint
VðMÞ is in a separable form of fVm;m ∈ ½1;M�g, where
Vm≡f(PXm

ð·Þ;ε:)∈G;ρSm ∈BðHSÞ;QðρSmWm
Þ≥ yg. This

separable form and the LOCC encoding allow the upper
bound [42] χUBL ðΨ⊗MÞ ≤ P

M
m¼1maxVm

F½ρSmWm
; (PXm

ð·Þ;
ε:)�, which can be achieved [42] by block encoding
[24], leading to Eq. (2) since ρB ¼ P

xPXðxÞΨ∘εx½ρS�.
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Special case: Generalized covariant channels.—
Considering a d-dimensional channel Ψ, we define its
covariant group GðΨÞ≔fU∈UðdÞ∶∀ densitymatrixρ;
∃V∈UðdÞ; such thatΨðUρU†Þ¼VΨðρÞV†g, where UðdÞ
is the d-dimensional unitary group. If there exists a subset
GUðΨÞ ⊂ GðΨÞ of size d2 such thatPUx∈GUðΨÞUxMU†

x¼0

for all d × d traceless matricesM [23], we callΨ generalized
covariant. Generalized covariant channels include covariant
channels [36] and Weyl-covariant channels [37], and they
allow a simplification of Theorem 1 [42].
Corollary 2.—With an arbitrary qudit state as input and

arbitrary encoding, and resources constrained by
QðρSWÞ ≥ y, the classical capacity of a d-dimensional
generalized covariant channel Ψ is

χLðΨÞ ¼ S½ΨðI=dÞ� − min
ε;ρSW ;

QðρSW Þ≥y
EΦε⊗I ½ρSW �: ð7Þ

It is additive when the constraint has a separable form on
each channel use and the encoding is LOCC.
Note that the encoding being considered is ε plus

unitaries in GUðΨÞ. The lower bounds of χLðΨÞ are
obtained by choosing a special ε; if ε ¼ I (unitary
encoding), Φε is Ψ’s complementary channel Ψc and we
recover χILðΨÞ; if ε ¼ R, the map from all states to a pure
state inside HS, we recover Cð1Þ. Note here that we do not
require phase flips to guarantee achievability.
For the quantum erasure channel (QEC) [61], Eq. (7) can

be further simplified to χLðΨÞ ¼ maxε;ρSW ð1 − ϵÞðlog2d−
Eεc⊗I ½ρSW �Þ, where ϵ is the erasure probability [42]. Let
the quantum mutual information be the bipartite
correlation measure in QðρSWÞ ≥ y. One can further obtain
the lower bound [42] χIL ¼ CE½1 − y=ð2log2dÞ�, where
CE ¼ ð1 − ϵÞ2log2d [14]. The other lower bound is Cð1Þ ¼
C ¼ CE=2 [62]. We observe that, at y ¼ 2log2d, ρSW is
maximally entangled and thus ρS ¼ I=d, χL ¼ Cð1Þ, while
χIL ¼ 0; at y ¼ 0, χL ¼ χIL ¼ CE. These two points are
generic for all channels; when 0 < y < 2log2d, it is an open
question as towhich ε allows χLðΨÞ to exceedmax ½χIL; Cð1Þ�.
Numerical results of the quantum depolarizing channel [15]
suggest similar scaling behavior with y [42].
Application in quantum cryptography.—We apply

Theorem 1 in TW-QKD protocols to bound the general
eavesdropper Eve’s (coherent attack) information gain.
Figure 3 shows a general TW-QKD protocol [59]. First,
party 1 prepares a pure signal-reference pair ðR;WÞ.
Reference W is kept by party 1, and a portion of it is
used for security checking [63]. Then the signal R goes
through the forward channel controlled by Eve to party 2.
Eve performs a unitary operation on R and the pure mode
V, producing her ancilla E and S for party 2. Note that, in
multiple channel uses, Eve’s unitary operation can act on all
signals jointly. Upon receiving S, party 2 uses a portion of
the S for security checking [63] and encodes a secret key on

the rest of S by a chosen scheme (PXð·Þ; ε:). The security
checking by party 1 and party 2 jointly measures certain
functionsQðρSWÞ of the state ρSW . Then the encoded signal
goes through channel Ψ in party 2 (e.g., device loss,
amplification), leading to the output mode B, which is sent
back to party 1 through the backward channel controlled by
Eve. Finally, party 1 makes a measurement on the received
mode and reference W to obtain the secret key.
Corollary 3.—In the TW-QKD protocol given above, the

information gain per channel use of the eavesdropper’s
coherent attack is upper bounded by χLðΨÞ ¼
maxρSWF½ρSW; (PXð·Þ; ε:)�, where F½·� is defined in
Eq. (6), and the maximization is constrained by security
checking measurement result QðρSWÞ ¼ y and keeping
ρW fixed.
Proof.—To upper bound Eve’s information gain, we give

Eve all of B. This concession to Eve will not substantially
increase Eve’s information gain in long-distance QKD
since the return fiber loss ≪ 1 (e.g., ∼0.01 at 100 km),
which means almost all of the light is leaked to Eve. Eve
makes an optimal measurement on all ðB;EÞ pairs in
multiple channel uses.
In a single run of the QKD protocol, ðS; E;WÞ is pure

after Eve’s unitary operation, the same scenario as for
Theorem 1. Here, W is the witness—kept locally by party
1 and inaccessible to Eve; E provides the resource as the
preshared ancilla. The multiple QKD protocol runs also fit in
our scenario. Moreover, party 1 and party 2 perform security
checking to obtain constraints in the form of Eqs. (1) and (3)
on ρSW . Controlled by party 2, the encoding operations are
always LOCC. Equation (2) upper bounds the information
gain per channel use of Eve’s coherent attack.
Special case: Gaussian protocol.—If party 2 chooses the

Gaussian channel to be Ψ covariant with the unitary
encoding, similar to Corollary 2, χLðΨÞ in Corollary 3 has

F½ρSW; (PXð·Þ; ε:)� ¼ SðρBÞ − EΨc⊗I ½ρSW �: ð8Þ

For Gaussian protocols, the source ðR;WÞ and the channel
Ψ are Gaussian. The security checking functions are the
mean photon number of S, and the cross-correlation

FIG. 3. Schematic of two-way QKD. The dotted circles high-
light the three modes in the resource distribution step.
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between S and W—both are functions of the covariance
matrix ΛSW of ρSW . As a simplified form of Eq. (6), Eq. (8)
is subadditive. Moreover, W is Gaussian and passive
symplectic transforms [27] over S preserve Eq. (8) [28],
so the Gaussian extremality theorem [64] applies. With all
of the constraints on ΛSW , Eq. (8) is maximum when ρSW is
Gaussian. Thus, for Gaussian protocols, the collective
Gaussian attack is the most powerful.
Discussion.—In future work, constraints in expectation

value forms, i.e., E½QkðρSWÞ� ≥ yk, an extension of
Corollary 2 to infinite dimensional systems, and an explicit
evaluation of the capacity of the QEC are of interest.
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