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Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In
addition to the conventional symmetric and antisymmetric states under permutations of bosons and
fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such
symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical
cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-
independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In
weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry
under permutations of particle states, respectively. The second-order transitions between the phases are
characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not
caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong
interactions are discussed.
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A distinctive feature of phase transitions is analytic
discontinuities or singularities in the thermodynamic func-
tions [1]. The transitions, analyzed here, are related to the
permutation symmetry. According to the Pauli exclusion
principle, the many-body wave function can be either
symmetric of antisymmetric over particle permutations
[2]. The particles can be either elementary—like electrons
or photons—or composite—as atoms and molecules.
The symmetric and antisymmetric wave functions

belong to one-dimensional irreducible representations
(irreps) of the symmetric (or permutation) group [3].
However, group theory allows for the multidimensional,
non-Abelian irreps of this group. They can be illustrated by
many-body spin wave functions of electrons. A two-
electron system with the total spin projection 0 has two
states. In the first one, the first and the second electrons are
in the spin up and spin down states, respectively, and
vice versa in the second state. These two states can be
symmetrized or antisymmetrized, giving the triplet and
singlet states, respectively.
In the case of three electrons with the total spin projection

1=2, each of them can be in the spin down state. This
provides three nonsymmetric states. Symmetrization over
permutations provides a one-dimensional irrep. However,
the antisymmetric state does not exist, since two electrons
are in the same spin up state. Then two three-body wave
functions, which are orthogonal to the symmetric wave
function, form a two-dimensional irrep.
Non-Abelian permutation symmetry has been consid-

ered in early years of quantum mechanics by Wigner [4],
Heitler [5], and Dirac [6], before the Pauli exclusion
principle was discovered. Particles with such symmetry,
called “intermedions” were considered later and there are
strong arguments that the total wave function cannot belong

to a non-Abelian irrep [7]. Nevertheless, if the spin and
spatial degrees of freedom are separable, the total wave
function, satisfying the Pauli principle, can be represented
as a sum of products of spin and spatial wave functions with
non-Abelian permutation symmetry. (Such wave functions
are used in spin-free quantum chemistry [8,9], one-
dimensional systems [10,11], and molecular relaxation
[12].) Then spin-independent or coordinate-independent
properties of such systems will be the same as those of
hypothetical intermedions. The present work analyzes
unusual thermodynamic properties arising from non-
Abelian permutation symmetry.
A wave function can be symmetric or antisymmetric for

any number of particles N. In contrast, the non-Abelian
irrep matrices are specific for each N. Then the non-
Abelian case can be described in canonical and micro-
canonical ensembles, but not in a grand canonical one. In a
microcanonical ensemble [1], the macrostate of the gas is
determined by N, the total energy E, the external potential
or the volume where the particles are contained, and, in the
present case, by the many-body spin S. According to the
postulate of equal a priori probabilities [1], the system is
equally likely to be in any microstate consistent with the
given macrostate. The microstates are eigenstates of the
many-body Hamiltonian. [An alternative derivation (see
Supplemental Material [13]) is based on the Berry con-
jecture [19] rather than on the postulate of equal a priori
probabilities].
Randomization of phases, due to either Hamiltonian

chaos (as expressed by the Berry’s conjecture [19,20]) or
interactions with the environment, allows us to perform any
unitary transformation of the microstates [1], namely, to
eigenstates of noninteracting particles. For a gas of spin-
1=2 fermions they are eigenstates of the Hamiltonian
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Ĥ ¼ Ĥspin þ Ĥspat; ð1Þ

where Ĥspin is independent of the particle coordinates and
Ĥspat is spin independent. Since the Hamiltonian (1)
contains no terms that depend on both spins and coor-
dinates, its eigenstates have the defined total spin S and can
be represented as [13]

~ΨðSÞ
r̂fεg ¼ f−1=2S ðNÞ

X

t

~ΦðSÞ
tr̂fεgΞ

ðSÞ
t : ð2Þ

Here the spatial ~ΦðSÞ
tr̂fεg and spin Ξ

ðSÞ
t wave functions belong

to conjugate irreps of the symmetric group. The irreps are
associated with the Young diagram ½2N=2−S; 12S�, which is
pictured as N=2 − S rows with two boxes and 2S rows with
one box [see, e.g, Figs. 2(a) and 2(b)]. The Young diagram
is unambiguously determined by the total spin S and the
irreps have the dimension fSðNÞ [13].
The functions within irreps are labeled by the standard

Young tableaux t—the Young diagram ½2N=2−S; 12S� filled
by the numbers 1…N which increase in each column and
row from top to bottom and left to right, respectively [13].
The microstates are specified by the set of single-body
energies fεg≡ fε1…εNg and the Weyl tableau r̂ [21]. The
latter is a two-column Young diagram ½2N=2−S; 12S� filled by
εj such that they increase down each column but may be
equal or increase left to right in each row [see Figs. 2(a) and
2(b)]. Then in the case of spin-1=2 fermions the set fεg can
contain no more than double degeneracies. As proved in
[13], the tableau r̂ can take fSðq1Þ values, where q1 is the
number of nondegenerate energies in the set fεg. Then
fSðq1Þ can be considered as a statistical weight of the
many-body state. Since the energies have to increase down
the columns, the degenerate energies have to be placed in
different columns, and the number of pairs of equal εj,
q2 ¼ ðN − q1Þ=2, cannot exceed the shorter column
length N=2 − S.
The eigenstates (2) with a defined total spin form a set of

degenerate states with collective spin wave functions ΞðSÞ
t

and undefined spin projections of individual particles. The
Hamiltonian (1) has also a set of degenerate eigenstates
with the same energy but with defined individual spin
projections and an undefined total spin. Given the total spin
projection Sz (sum of individual spin projections), these
sets can be connected by a unitary transformation.
Spin-independent interactions between particles split

energies of the states with different total spins, making
the set with defined individual spins inapplicable [5], but
this effect is small for weakly interacting gases. A particular
case of the states with defined total spins is the collective
Dicke states [22] of two-level particles, coupled by an
electromagnetic field in a cavity. A two-dimensional cavity
leads to spin-dependent spatially homogeneous interactions
of the form [23] Ĥspin ¼ IŜþŜ−, where Ŝþ and Ŝ− are the
total spin raising and lowering operators. Such interaction,

realized in recent experiments [24], lead to the energy shift
ESSz ¼ I½SzðSz − 1Þ − SðSþ 1Þ�, providing substantial
splitting of the states with different total spins [13].
The protocol, proposed in [25], starts from the spin-

polarized state with S ¼ Sz ¼ N=2. A time-dependent
potential, which changes the spin states of particles, but,
being coordinate independent, conserves the total spin, can
transfer the population to the state with S ¼ N=2,
Sz ¼ N=2 − 1. Later a potential, which does not change
the spin states of particles, can, being dependent on
coordinates and spins, transfer the population to the state
with S ¼ N=2 − 1, Sz ¼ N=2 − 1. A sequence of such
pulses with proper time-dependencies can populate the
state with any total spin. The population will not be
transferred back to higher S and Sz, since the energy
spectrum ESSz is not equidistant and, therefore, ESSz−
ESSz−1 ≠ ESSzþ1 − ESSz and ESSz−ES−1Sz≠ESþ1Sz−ESSz .
Following the Gentile’s version [26] of the general

microcanonical approach, let us divide the single-body
energy spectrum into cells (see Fig. 1) containing gi energy

levels with the average energy ε̄i. Let q
ðiÞ
0 , qðiÞ1 , and qðiÞ2

levels be, respectively, nonoccupied, single occupied, and
double occupied in the ith cell. Given these occupations,

the levels in the cell can be distributed in gi!=ðqðiÞ0 !qðiÞ1 !qðiÞ2 !Þ
distinct ways [26]. Then the number of distinct microstates

associated with the sets qðiÞl is fSðq1Þ
Q

igi!=ðqðiÞ0 !qðiÞ1 !qðiÞ2 !Þ.
The system configuration corresponds to the most-probable

values of qðiÞl [13]. They maximize the number of micro-
states, or its logarithm—entropy

H ¼
X

i

�
gi ln gi −

X2

l¼0

qðiÞl ln qðiÞl

�
þ ln fSðq1Þ: ð3Þ

Here the Stirling approximation is used. The number of
nondegenerate energies εj in the set fεg is equal to the total
number of single-occupied levels q1 ¼

P
iq

ðiÞ
1 . The sum in

Eq. (3) gives the entropy of the Gentile gas [26]. The
present results follow from the last term, which will be
referred to as non-Abelian entropy, since it vanishes
when fS ¼ 1.
A permutation of single-body energies in the set fεg

transforms [6,8] the wave function (2) to a linear combi-

nation of ~ΨðSÞ
r̂fεg with different r̂. The Weyl tableaux r̂ are

unambiguously related to the Young tableaux of the shape

ε1 ε2 ε3 ε

FIG. 1. Cells with average energies ε̄i in a single-body energy
spectrum. The circles denote the level occupation.
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½2N=2−S−q2 ; 12S� obtained by the crossing out of the q2
degenerate pairs of εj from the Weyl tableaux withN=2 − S

two-box rows [13]. Then the wave functions ~ΨðSÞ
r̂fεg form an

irrep, associated with the Young diagram ½2N=2−S−q2 ; 12S�,
of the group Sq1 of permutations of nondegenerate εj. In the
saturated phase, q2 ¼ N=2 − S, the diagram has one
column [see Fig. 2(b)], the irrep is Abelian, and the
many-body state has the statistical weight fSð2SÞ ¼ 1.
The unsaturated phase (q2 < N=2 − S) corresponds to the
non-Abelian irreps [see Fig. 2(a)]. At high temperatures,
when the number of double-occupied levels q2 is small, the
system is in the unsaturated phase. On the temperature
decrease, q2 increases, while the statistical weight fSðq1Þ
decreases [see Fig. 2(c)]. At the critical temperature q2
reaches the maximal allowed value N=2 − S, the system
transforms to the saturated phase, and fSðq1Þ has a corner.
This leads to discontinuity of the specific heat (per atom)
Cv ¼ ð∂E=∂TÞV=N (see Figs. 2(c) and 3 and [13]). The
transition is characterized by the non-Abelian entropy
ln fSðq1Þ, which ranges between zero in the saturated
phase and nonzero in the unsaturated one. However,
ln fSðq1Þ is not a local order parameter. Rather, it is a
topological characteristic of the collective state.
The conventional state with defined individual spins is a

mixture of two gases containing N=2þ Sz and N=2 − Sz
particles, respectively, with Fermi-Dirac distributions. It is
a superposition of all states with defined total spins S ≤ Sz.
As the statistical weight fSðNÞ attains its maximum at
S ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 2
p

=2, the state with S ¼ Sz dominates in this

superposition, unless Sz ≲
ffiffiffiffi
N

p
. However, thermodynamic

properties of each S-component in this superposition are
determined by the maximum of the mixture entropy, which
is different from Eq. (3). Then none of the S components is
in its thermal equilibrium. As a result, thermodynamic
properties of the mixture and of the non-Abelian state with
S ¼ Sz are different, and the mixture does not demonstrate
the phase transition (see Fig. 3 and [13]).
The present phase transition has no latent heat since the

energy, as well as entropy and pressure, is continuous [13].
It is therefore a second-order phase transition, like the well-
known superconducting one in the absence of magnetic
fields. However, the latter is a result of interactions between
particles, while the present phase transition can take place
in an ideal gas. In this sense, it is similar to the Bose-
Einstein condensation phase transition, where the specific
heat is discontinuous in the special case of a gas in a 3D
harmonic trap [27,28]. In contrast, the present phase
transition takes place in trapped and free gases of any
dimension (see Fig. 3 and [13]). Figures 4(a) and 4(b) show
the specific heat at the phase boundary, which is discon-
tinuous and different from the one for defined individual
spins. Being plotted as a function of the scaled temperature
T=TkðNÞ, it demonstrates small variation when the trap-
ping and dimensionality are changed [see Figs. 4(b)
and 4(c)]. Here the temperature scale is

TkðNÞ ¼ ν−1=ðkþ1Þ
k N−k=ðkþ1Þ ð4Þ

and k is the parameter in the energy density of single-body
levels νðεÞ ¼ νkε

k (for the 2D and 3D gases in flat
potentials k ¼ 0 and 1=2, respectively, while k ¼ 1 and
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FIG. 2. (a) Three allowed Weyl tableaux for ε1 ¼ ε2 < ε3 <
ε4 < ε5 < ε6 corresponding to the unsaturated phase. The black
cells form Young tableaux corresponding to a non-Abelian irrep.
(b) AWeyl tableau for ε1 ¼ ε2 < ε3 ¼ ε4 < ε5 < ε6 correspond-
ing to the saturated phase. The black cells form a one-column
Young tableau corresponding to an antisymmetric irrep. (c) The
total number of double-occupied levels q2 (blue long dash),
the maximal allowed value of q2 (green horizontal short dash),
non-Abelian entropy ln fSðq1Þ (black solid line), and specific
heat (per atom) Cv (red dotted-dashed line) at the temperature T
for N ¼ 102 two-dimensional particles in a flat potential with the
total spin S ¼ 20. The temperature scale T0 is given by Eq. (4).
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2 for the 2D and 3D harmonic trapping, respectively [13]).
The plots for different numbers of particles converge on the
decrease of the scaled temperature [see Fig. 4(a)]. The
temperature scale is related to the Fermi energy defined by
the equation

R εF
0 νkε

kdε ¼ N as εF ¼ ½ðkþ 1ÞN=νk�1=ðkþ1Þ.
Then the average energy density εF=N is, up to a factor, the
temperature scale (4). Figure 4(c) shows that the relative
change of the specific heat at the phase boundary
approaches 0.5 at T < TkðNÞ for any trapping and dimen-
sionality. Except of the case of a free 2D gas, the temper-
ature scale decreases with increase of N. Then the more
particles are in the gas, the lower the temperature required
in order to observe the phase transition. Even in a free 2D
gas, the required temperature decreases in the thermody-
namic limit, when N → ∞ with the fixed density N=V2D,

since ν0 ∝ V2D tends to infinity [13] and, therefore,
T0ðNÞ → 0. In this sense, the phase transition is a meso-
scopic effect (see the discussion in the end of [13]).
In Gentile’s intermediate statistics [26], each single-body

state can be occupied by a limited number of particles. If
this limit is two, Gentile’s statistics leads to Eq. (3) with
fS ≡ 1 and S ¼ 0, when the two columns of the Young
diagram have equal length. For S ¼ 0, as demonstrated
above, the transition temperature tends to zero and the gas
is in the unsaturated phase at finite temperatures. Then the
phase transition, considered here, cannot appear in
Gentile’s statistics. Another reason is that the condition
fS ≡ 1 eliminates the non-Abelian entropy and any con-
nection between occupations of single-body states. The
non-Abelian entropy depends on the total number of single-
occupied states and is not an extensive nor an intensive
property, being related to the collective state of the gas.
Zero-range two-body interactions in cold spin-1=2 Fermi

gases are spin independent, since collisions of atoms in the
same spin state are forbidden by the Pauli principle. The
interactions become spin dependent and spin and spatial
degrees of freedom become inseparable due to inappli-
cability of the zero-range approximation when the de
Broglie wavelength becomes comparable to the effective
interaction radius reff [13]. Then the atom energy is
restricted by ∼40 mK for 6Li atoms (the limiting energy
is inversely proportional to the atom mass). Under the same
condition, the gas can be considered as weakly interacting
and the formation of dimers or Cooper pairs for repulsive or
attractive interactions, respectively, can be neglected [13],
since the elastic scattering length is jaSj ≈ reff for nonreso-
nant interactions.
However, the spin and spatial degrees of freedom can be

separated for interactions of arbitrary strength while they
are spin independent, and the gas can be kept in a state with
the defined many-body spin. For example, in the case of
cold atoms, Feshbach resonances [27–29] can provide large
aS for zero-range interactions, leading to non-negligible
formation of dimers or Cooper pairs. Since they are
symmetric over permutations of forming-particle’s coor-
dinates, the number of dimers and Cooper pairs will be
restricted by N=2 − S. This can lead to phase transitions in
strongly interacting gases too, although particles do not
occupy single-body states.
In high-spin Fermi gases, similar phase transitions can

appear when the interactions are spin independent, as in
SUðnÞ gases [30–35]. If the spatial state of such gas is
associated with a Young diagram with nonequal column
lengths, a phase transition can be expected when the
number of levels occupied by l particles approaches the
lth column length.
Bose gases with spin-independent interactions allow for

the separation of spin and spatial degrees of freedom, and
their states can be associated with Young diagrams too.
Such states of spin-1=2 bosons were analyzed [36,37] using
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(black solid and blue long-dashed lines for the 2D and 3D cases,
respectively) and in harmonic traps (red dotted-dashed and
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SUð2Þ symmetry [irreps of SUð2Þ and symmetric groups
are closely related, having common basic functions]. In the
ground state, all particles occupy two lowest levels [36,37].
Non-Abelian entropy can lead to a phase transition when
the occupation of the lowest level approaches the first row
length N=2þ S. For high-spin bosons, phase transitions
can be expected when the occupation of the nth excited
level approaches the length of nþ 1th row. A certain
analogy can be drawn to the phase transitions in coupled
tubes controlled by the tube filling factors [38].
States with non-Abelian symmetry can find applications

in quantummetrology, computing and information process-
ing, like non-Abelian anyons related to representations of
the braid group [39,40]. Thermodynamical properties of an
ideal gas of non-Abelian anyons studied in [41] do not
demonstrate phase transitions.
In conclusion, eigenstates of two-component Fermi

gases have defined many-body spins and can be associated
with multidimensional, non-Abelian irreps of the symmet-
ric group. An additional energy degeneracy of the eigen-
states modifies the system entropy, leading to second-order
phase transitions in the case of weak interactions.
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