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Universal properties of entangled many-body states are controlled by their symmetry and quantum
fluctuations. By the magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum
dot, we have modified quantum fluctuations to directly measure their influence on the many-body
properties along the crossover from SU(4) to SU(2) symmetry of the ground state. High-sensitive current
noise measurements combined with the nonequilibrium Fermi liquid theory clarify that the Kondo
resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase
along the symmetry crossover. Our achievement demonstrates that nonlinear noise constitutes a measure of
quantum fluctuations that can be used to tackle quantum phase transitions.
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Introduction.—Understanding the emergence of universal
properties in entangled many-body states is a major task in
various branches of physics. The key challenge is to unveil
how they are governed by quantum fluctuations. The Kondo
effect [1,2] is one of the paradigms for such many-body
states, arising from entanglement of a localized electron
with conduction electrons that screen its magnetic moment.
It plays an important role in transport through quantum dots
[3–5], where the dot and conducting electrons are entangled
in a singlet ground state with SU(2) symmetry to screen the
localized spin S ¼ 1

2
. Interestingly, when several degrees of

freedom including orbital magnetic moment as well as spins
are combined in a highly degenerate internal moment, more
peculiar Kondo many-body states are formed [6,7] with
different symmetries [8] because of the resulting rich spin-
orbital configurations. At the heart of these phenomena are
the quantum fluctuations between different configurations
reflecting quantum uncertainty. However, the evolution of
fluctuations between different symmetries of the Kondo
states remains unexplored.
In this Letter, by tuning the Kondo state in a carbon

nanotube (CNT) with a magnetic field [9], we continuously
change the quantum fluctuations to directly measure their
influence on the many-body properties. Nonequilibrium
current noise measurements along the crossover between
SU(4) and SU(2) symmetry of the ground state quantita-
tively demonstrate how fluctuations affect the residual
interaction between quasiparticles to enhance the Kondo
resonance [10–13]. This work demonstrates an unambigu-
ous link between the effective charge e� and quantum
fluctuations, and suggests that it can be extended in regions
of broken symmetries where no theory exists yet. Hence, it

provides a new way to measure quantum fluctuations via
the effective charge e� in the nonlinear noise [14,15], which
can be used to unveil their critical role in quantum phase
transitions.
Principle of the symmetry crossover.—In CNT quantum

dots, electrons possess spin and orbital (valley) degrees of
freedom as shown in the central inset of Fig. 1. Each state is
fourfold degenerate yielding the SU(4) Kondo ground state
[16–20]. We induce a never-observed crossover from the
SU(4) to the SU(2) symmetry at half filling (two electrons in
the dot) by tuning the orbital and spin degeneracy with a
magnetic field. As the degeneracy of the screened degree of
freedom decreases, quantum fluctuations between two of its
components induce a larger relative change in the total
magnetic moment. This enhancement of the fluctuations,
which is eventually quantified by theWilson ratio, leads to a
stronger residual interaction between quasiparticles [10,21].
We investigate this scenario by probing the conductance,
Kondo temperature, and nonequilibrium effective charge e�,
which are precisely compared with the Fermi liquid theory
extended out of equilibrium [22–24]. The originality of this
work lies in the control of the many-body symmetry at
constant filling of the dot, which ensures that fluctuations are
the only variable and enables us to demonstrate the continu-
ous crossover between the two symmetries.
More specifically, consider a CNT in the magnetic field

making an angle θwith its axis (see the central inset of Fig. 1).
The field B acts on the spin with the Zeeman energy
Espin ¼ 1

2
σgSμBB, whereas only its parallel component

B cos θ acts on the orbital momentum [20] adding a term
Eorb ¼ τgorbμBB cos θ. Here, μB is the Bohr magneton, gS
and gorb are the spin and orbital Landé factors, σ ¼ �1 refers

PRL 118, 196803 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

0031-9007=17=118(19)=196803(5) 196803-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.196803
https://doi.org/10.1103/PhysRevLett.118.196803
https://doi.org/10.1103/PhysRevLett.118.196803
https://doi.org/10.1103/PhysRevLett.118.196803


to the spin direction, and τ ¼ �1 refers to thevalley quantum
number. Our experiment was carried out with gorb ≈ 4
and θ ≈ 75° [26], which satisfies a special condition of
gorb cos θ ≈ gS=2 ¼ 1.
The top panel of Fig. 1(a) shows the four degenerate

ground states for a dot containing one particle (N ¼ 1
corresponds to a single electron case and N ¼ 3 to a single
hole case). When the magnetic field is applied, the energy
shift is almost the same (∼μBB) for both the spin and valley
because gorb cos θ ≈ gS=2 ¼ 1, and the total magnetic
energy in this case is E ¼ ðσ þ τÞμBB [see the middle
panel of Fig. 1(a)]. Hence, four states are degenerate
forming an SU(4) Kondo state at B ¼ 0, while the
degeneracy is lifted and the Kondo effect disappears for
finite B [bottom panel of Fig. 1(a)].
When the dot contains two electrons (N ¼ 2), there

are six degenerate states at B ¼ 0 as shown in the top
panel of Fig. 1(b). Because gorb cos θ ≈ gS=2 ¼ 1 again, asB
increases, two states are shifted by ΔE ¼ −2μBB, two are

unaffected, and the last two are shifted by ΔE ¼ þ2μBB
[see the middle panel of Fig. 1(b)]. As a result, the ground
state remains doubly degenerate for finiteB. AtB ¼ 0 the six
degenerate states give rise to the SU(4) Kondo effect. When
the field is sufficiently high that the ground state is only
doubly degenerate within the characteristic energy scale
kBTK [shaded area of the middle panel of Fig. 1(b)], the
SU(2) Kondo state emerges. A partial representation of the
many-body ground state that screens the magnetic moment
on the dot is given in the bottom panel of Fig. 1(b). The full
ground state is given in Ref. [26]. This crossover for the
N ¼ 2 case is addressed in this study.
Experimental setup.—Our device [27] is a CVD grown

CNT [28] on a nondoped silicon wafer connected to metallic
pads composed of a bilayer, Pdð6 nmÞ=Alð70 nmÞ. A side
gate electrode can tune the discrete energy levels of the CNT
quantum dot. The conductance and the noise measurements
were performed for the device placed in the dilution fridge,
whose base temperature was 16 mK. A small in-plane
magnetic field of 0.08 T in addition to B was always applied
to suppress the superconductivity of Al. For the noise
measurement, the device was connected to an LC circuit
with a resonance frequency of 2.58 MHz thermalized on the
mixing chamber of the fridge [29]. The power spectral density
of the noise was obtained by amplifying the noise signal with
a homemade cryogenic amplifier fixed on the 1K pot, taking
the time-domain signal by a digitizer, and performing the fast
Fourier transformation of the data. The current noise of the dot
was extracted from the fit of the shape of the resonance curve
in the frequency domain. The analysis for themeasured noise
was done in the same way as in Ref. [27].
Observation of SU(4)–SU(2) Kondo crossover.—The

stability diagram of our CNT quantum dot for B ¼ 0, 4,
8, and 10 T is shown in Fig. 2(a) as a contour plot of the
differential conductance G as a function of the source-drain
voltage Vsd and gate voltage Vg. The dot filling consists of
successive shells containing four almost degenerate states
and we label by N ¼ 0, 1, 2, and 3 the number of electrons
in the last occupied shell. N is electrostatically controlled by
Vg. The Kondo resonance manifests itself as a maximum in
G at Vsd ¼ 0, which appears as a bright vertical line parallel
to the Vg axis, called the Kondo ridge. At B ¼ 0 T, the
resonance is seen for every filling as expected for the SU(4)
Kondo effect [27,30]. For N ¼ 1 and 3, the zero bias
conductances are G ≈ GQ, while G ¼ 1.85GQ for N ¼ 2,
where GQ ≡ 2e2=h (e is the electronic charge and h is the
Planck constant) is the conductance quantum.
As seen in Fig. 2(a), when the field increases from 0 to

10 T, those ridges at N ¼ 1 and N ¼ 3 progressively
disappear whereas the N ¼ 2 ridge remains until very high
field. Indeed, on the contour plot, the bright vertical lines at
N ¼ 1 andN ¼ 3 become dark, denoting that the resonance
splits and G becomes minimum at Vsd ¼ 0. As indicated in
the rightmost panel of Fig. 2(a), two satellite peaks appear
at voltages close to eVsd ¼ �2μBB as expected from the
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FIG. 1. Central inset: the spin and orbital (valley) degrees of
freedom of an electron in a CNT are shown by the straight and
circle arrows, respectively. The magnetic field is applied making
an angle θ with the CNT axis. The figure is partially drawn by
VESTA [25]. (a) Top panel: representation of the four degenerate
ground states for a dot containing one particle (N ¼ 1 and
N ¼ 3). Middle panel: single-particle energy spectrum as a
function of B for the case of gorbμB cos θ ¼ gSμBS. Bottom
panel: at B ¼ 0, four states are degenerate forming an
SU(4) Kondo state. At finite field, the Kondo effect disappears.
(b) Top panel: representation of the six degenerate ground states
for a dot with two particles (N ¼ 2). Middle panel: the total
magnetic energy is E ¼ ðσ1 þ τ1 þ σ2 þ τ2ÞμBB. Each line is
twice degenerate and corresponds to the states labeled on the
graph. The shade around the ground state represents kBTK .
Bottom panel: at B ¼ 0, an SU(4) Kondo state is formed due to
the sixfold degeneracy. At high field it evolves continuously to
SU(2) (see text).
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single-particle levels in Fig. 1(a). On the other hand, for
N ¼ 2, the vertical Kondo ridge survives albeit with reduced
intensity. AtB ¼ 0,G ¼ 1.85GQ, which is close to 2GQ, the
expected value for the N ¼ 2 unitary SU(4) state. As B
increases,G decreases towardGQ, the value expected for the
SU(2) Kondo effect [31].
Comparison with NRG calculations.—The above inter-

pretation is quantitatively supported by the numerical
renormalization group (NRG) calculations [26,32–34].
We have successfully reproduced the complete shape of
the zero-bias conductanceG as a function ofVg as displayed
in Fig. 2(b). The solid lines are experimental results for
B ¼ 0, 2, 4, and 12 T, whereas the dashed lines correspond
to the NRG calculation for the same magnetic fields using
the parameters U=Γ ¼ 3.15 (U is the charging energy, Γ is
the coupling strength) and gorb cos θ ¼ 1. This successful
comparison allowed us to compute TK and the Wilson ratio
R [35] from the NRG parameters as shown in Figs. 2(c)
and 3(a), respectively. This ratio, proportional to the spin
susceptibility, serves to quantify spin fluctuations on the dot,
which create the Kondo effect (see Ref. [26] for the

definition of the present Wilson ratio). R ranges from 1
for noninteracting quasiparticles to 2 for the SU(2) Kondo
state. Thus, Fig. 3(a) shows how quantum fluctuations
continuously increase along the crossover when the mag-
netic field increases. The computed TK is in good agreement
with experimental values in the two limiting cases
SU(4) and SU(2) as shown in Fig. 2(c) [26]. The decrease
of TK in the SU(2) state denotes an enhancement of the
lifetime (h=kBTK) of the Kondo resonance due to the
increase of the fluctuations.
Shot noise along the symmetry crossover.—In the rest of

this Letter, we focus on the current noise SI to further
clarify the symmetry crossover at N ¼ 2.
First, we investigate the behavior of the transport

channels along the crossover. For a Kondo dot, the linear
transport properties are well described by noninteracting
quasiparticles as demonstrated recently [27]; G and SI
are expressed from the transmission channels Ti via
G ¼ GQ

P
Ti and SI¼2eFjIsdj, where F¼P

iTið1−TiÞ=P
iTi is the Fano factor (i ¼ 1; 2;…) [36]. Assuming

two independent channels, we obtain T1;2 ¼ g=2�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gð1 − FÞ − g2

p
, where g ¼ G=GQ.

N = 2 ground state

SU(4) Kondo SU(2) Kondo

μ Β

(a)

(b) (c)

FIG. 2. (a) Stability diagrams for B ¼ 0, 4, 8, and 10 T at T ¼
16 mK as contour plots of the conductance G as a function of Vg

and Vsd. The Kondo resonance produces the bright broad vertical
lines at Vsd ¼ 0. This ridge disappears at high field for N ¼ 1 and
3. It is split into two satellite peaks at high Vsd separated by
ΔeVsd ≈ 4μBB. At N ¼ 2, G decreases but it remains maximum
at Vsd ¼ 0. (b) Comparison of zero-bias conductance between the
experiment (solid lines) and the NRG calculation (dashed lines)
for several magnetic fields. (c) Field dependence of TK at N ¼ 2.
The dashed line is the result of the NRG calculation multiplied by
a factor of 1.3 to fit the experimental value at B ¼ 0. The error
bars result from the scaling procedure.

(b)

(c)

(a)

FIG. 3. (a) Wilson ratio R as a function of B. This ratio
measures the strength of dominant quantum fluctuations between
the two states represented on the graph, which yield the crossover
[26]. R is computed by NRG calculations with parameters
yielding the successful comparison with experiments for G
and F at the filling N ¼ 2. (b) Conductance G and Fano factor
F as a function of B. The F’s are obtained at each field by a linear
fit of the current noise at very low current using the formula
SI ¼ 2eFIsd. The dashed lines are the corresponding NRG
results. (c) Magnetic field dependence of the two transport
channels T1 and T2 (symbols), which are calculated from G
and F as explained in the text. The dashed lines are the
corresponding NRG results.
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G and F measured exactly at N ¼ 2 are plotted as a
function of B in Fig. 3(b). The transmission probabilities
T1;2 deduced from G and F are plotted with symbols in
Fig. 3(c). This figure shows that one transmission (T1)
remains almost unity during the crossover whereas the
other (T2) progressively vanishes to zero. This is the
experimental evidence that the device undergoes a cross-
over from two perfect channels [T1 ¼ T2 ≃ 1, the hallmark
of the SU(4) Kondo state] to one perfect channel [T1 ≃ 1
and T2 ≪ 1, the signature of the SU(2) Kondo state]. The
corresponding NRG results superposed by the dashed lines
in Fig. 3(c) nicely reproduce these experimental findings.
In this comparison a left-right asymmetry of the dot
G=2GQ ¼ 0.95 is taken into account for each transmission
obtained from the NRG calculation.
Effective charge along the symmetry crossover.—Now,

we present the central result, namely, the direct measure of
quantum fluctuations along the crossover at N ¼ 2. At
finite voltage, fluctuations induce a two particle scattering,
which creates a backscattered current resulting from events
involving one or two particles, or “bubbles” [15]. Hence,
the nonlinear noise is characterized by the effective charge
e�, the average backscattered charge, defined by [15]

e� ¼ e2P1 þ ð2eÞ2P2

eP1 þ ð2eÞP2

; ð1Þ

where P1 is the probability of single-particle backscattering
and P2 that for the two-particle backscattering. At T ¼ 0,
e� is experimentally defined as SK ¼ 2e�jIKj. SK ≡ SI −
2eFjIsdj is the nonlinear part of the noise and IK ≡
Gð0ÞVsd − Isd the nonlinear part of the current.
Theoretically, e�=e ¼ 5=3 in the SU(2) state and e�=e ¼
3=2 in the SU(4) state [10,21]. These values reflect that
P2 ¼ P1 in the SU(2) symmetry, whereas the two-particle
backscattering in the SU(4) symmetry is less frequent such
that P2 ¼ P1=2 because of the weakening of the fluctua-
tions in the dot [21].
Figure 4(a) represents SK as a function of IK measured at

B ¼ 0 T [SU(4) state] and at B ¼ 13 T [SU(2) state] at
16 mK. The lines are the linear fit, which yield e�=e ¼
1.4� 0.1 for SU(4) and e�=e ¼ 1.7� 0.1 for SU(2), being
in good agreement with the theory. We found that e� almost
continuously increases as B increases from 0 to 13 T.
This rules out SUð2Þ ⊗ SUð2Þ symmetry at B ¼ 0 instead
of SU(4), because e� would be independent of B for this
symmetry [26]. Knowing R as a function of B [Fig. 3(a)],
we represent e� as a function of R in Fig. 4(b). Clearly, the
effective charge gradually increases as R increases. This
graph illustrates how quantum fluctuations (namely, R)
affect the two particle scattering (e�). This is the key result
of this Letter. It demonstrates that e� is a relevant
experimental measure to quantify quantum fluctuations.
For a well defined symmetry SUðnÞ, theory predicts that

the Wilson ratio and the effective charge in the Kondo

region are given only by n such thatR ¼ 1þ 1=ðn − 1Þ and
e�=e ¼ ðnþ 8Þ=ðnþ 4Þ, respectively [11]. We extend this
relation in the broken symmetry region, yielding

e�

e
¼ 1þ 9ðR − 1Þ

1þ 5ðR − 1Þ ; ð2Þ

which is superposed as a dashed line in Fig. 4(b).
Interestingly, our result is well reproduced by this relation
continuously along the crossover from SU(4) to SU(2) even
in the intermediate symmetry region. This emphasizes how
nonequilibrium properties (e�) and equilibrium quantities
(R) are intricately linked in quantum many-body states.
Conclusion.—We addressed the microscopic mechanism

along the crossover between Kondo many-body states with
different symmetries by tuning the spin-orbital degeneracy in
a CNT quantum dot with a magnetic field at constant filling.
The direct monitoring of the evolution of transmission
channels by the conductance and the shot noise measure-
ments demonstrates the continuous symmetry crossover
between SU(4) and SU(2). The effective charge and the
Wilson ratio reveal that the enhancement of quantum
fluctuations from SU(4) to SU(2) increases the lifetime of
the Kondo resonance as well as the backscattering of pairs of
entangled particles induced by the residual interaction. More
generally, this work has experimentally established a con-
vincing link between nonlinear noise and quantum fluctua-
tions, which calls for an extension of the theory for ground
states with broken symmetries. Hence, it paves the way

(a) (b)

FIG. 4. (a) Nonlinear noise SK as a function of the back-
scattered current IK at B ¼ 0 T [SU(4) state] and B ¼ 13 T
[SU(2) state]. The solid and dashed lines are the result of the
linear fit yielding e�=e ¼ 1.4� 0.1 at B ¼ 0 T and e�=e ¼ 1.7�
0.1 at B ¼ 13 T, respectively. (b) The filled circles show the
effective charge e�=e as a function of R, which quantifies the
strength of fluctuations (the error bars for R originate from
the uncertainty of gorb cos θ). The three square symbols represent
the theoretical prediction for SU(4), SU(2), and noninteracting
particles. The dashed line is the extended theoretical prediction
given in the text [Eq. (2)].
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towards the investigation of the role of fluctuations in
quantum phase transitions, one of the main issues in
many-body physics.
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