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The emerging field of topological acoustics that explores novel gauge-field-relatedphenomena for soundhas
drawn attention in recent years. However, previous approaches constructing a synthetic gauge field for sound
predominantly reliedon a periodic system, being unable to formauniformeffectivemagnetic field, thus lacking
access to some typical magnetic-induced quantum phenomena such as Landau energy quantization. Here we
introduce strain engineering, previously developed in graphene electronics and later transferred to photonics,
into a two-dimensional acoustic structure in order to form a uniform effective magnetic field for airborne
acousticwave propagation. Landau levels in the energy spectrum can be formed near theDirac cone region.We
also propose an experimentally feasible scheme to verify the existence of acoustic Landau levels with an
acoustic measurement. As a new freedom of constructing a synthetic gauge field for sound, our study offers a
path to previously inaccessible magneticlike effects in traditional periodic acoustic structures.
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Sound waves traveling through air are essentially longi-
tudinal waves, which carry no intrinsic spins and do not
respond to magnetic fields. Yet, by constructing gauge fields
with different approaches, it is possible to explore magnet-
iclike effects (e.g., the quantum Hall effect [1]) for sound.
This is the underlying mechanism supporting the emerging
field of topological acoustics [2–12], in which many novel
acoustic phenomena have been proposed and achieved in
the past few years. However, previous approaches of
constructing gauge fields relied on the periodic structures
and thus cannot form a uniform effective magnetic field (a
uniform magnetic field is associated with a nonperiodic
vector potential). As a consequence, some typical magnetic-
induced phenomena such as the quantized Landau levels [1]
have not been possible for airborne acoustic waves.
It is well known in graphene physics that a strong

uniform magnetic field applied on graphene can lead to the
quantized electronic conductivity as a result of quantized
Landau levels in the energy spectrum [13]. In a magnetic-
free circumstance, it has been reported that strained
graphene can form a gauge field with an effective magnetic
field reaching 300 T [14,15], opening a door to the strain
engineering of graphene electronics. Shortly, this idea of
strain engineering has been introduced into photonics [16],
where a strained honeycomb photonic lattice, being invari-
ant along the z direction, can form photonic Landau levels.
However, these photonic Landau levels refer to the quan-
tization of kz momentum, rather than the energy (fre-
quency), being fundamentally difficult to be implemented
in a two-dimensional (2D) geometry.
Here we introduce the strain-induced gauge fields into a

2D acoustic structure hosting airborne (longitudinal) acous-
tic waves. The strain effect makes the acoustic lattice

aperiodic, which can be realized by simply displacing the
lattice sites away from their original positions. The strain-
induced gauge field corresponds to a strong uniform
magnetic field, enabling the emergence of discretized
Landau levels separated by significant band gaps.
Comparing the previously demonstrated photonic Landau
levels [16] and the acoustic Landau levels studied in the
current work, one can find the following fundamental
distinctions. First, the photonic Landau levels are discrete
momentum levels of wave number kz, while the current
acoustic Landau levels are energy levels. Second, the
previous photonic Landau levels are demonstrated in a
three-dimensional structure whose z dimension should be
infinitely long, while the current acoustic Landau levels are
designed in a 2D geometry.
We start with an acoustic honeycomb lattice. The unit cell

of the lattice consists of two identical acoustic resonators
(cylinders A and B) connected with a thin cylindrical
coupling waveguide, as shown in Fig. 1(a). Their geomet-
rical parameters will be given later. The system is filled
with air, and the blue surfaces in Fig. 1(a) are treated as
acoustic hard boundaries. The lattice constant and nearest-
neighbor distance between two sites are a0 ¼

ffiffiffi
3

p
a and a,

respectively. This lattice of acoustic resonators can be
described by the coupled-mode equation [6,8,16] i∂tpn ¼P

hmiκðjrn;mjÞpm, where pn is the amplitude of the mode
for the nth resonator, κ is the coupling strength between
two resonators, and the summation is taken over the
nearest-neighbor resonators. The coupling strength κ,
which is physically realized by the coupling waveguide,
decays almost exponentially as the nearest-neighbor distance
increases [17]. Here we assume that the coupling strength
takes the form of function κ ¼ κ0 exp½−βðr=a − 1Þ� as it is
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in graphene [13,18], where κ0 is the coupling strength for
r ¼ a and β describes the decay rate of the coupling strength
(both values can be retrieved from data fitting). By consid-
ering only the lowest two acoustic eigenmodes, the solution
to the coupled-mode equation can be equivalent to the one to
the tight-binding Hamiltonian of graphene. As a result, at
each of the six corners of the Brillouin zone, the energy
bands will be expected to cross at the Dirac point. In the
following, we choose the radius and height of each resonator
as r ¼ 0.3a and h ¼ 2a=3, respectively. The coupling
waveguide connecting resonators A and B has the radius
of rc ¼ 0.1a. We numerically calculate the band structure of
the acoustic honeycomb lattice with a finite-element method,
in a square area (side length 0.4π=a) centered at a corner of
the first Brillouin zone, as shown in Fig. 1(b). It can be seen
that the lowest two bands exhibit the Dirac cone spectrum in
the valley K [near π=a0ð4=3; 0Þ]. The frequency at the Dirac
point is 0.255 × 2πc=a0 (or 5041 Hz for a ¼ 0.01 m),
where c is the speed of sound in air.
It has been reported that a 2D strain field can induce a

gauge fieldwith thevectorpotentialAðrÞ¼ðβ=a0Þðuxx−uyy;
−2uxyÞ, where uxx, uyy, and uxy are the elements of the strain
tensor [14]. The sign of the vector potential for a valley can
be changed by switching to another valley. The magnetic
field then can be calculated as BðrÞ ¼ ∇ × A (given units
ℏ=e ¼ 1). By designing a particular form of the strain
tensor, a vector potential corresponding to a uniformmagnetic
field can be achieved. It has been found in both a graphene
lattice [14] and a photonic honeycomb lattice [16] that a
triaxial strain can fulfill this requirement. In the following,
we apply the triaxial strain on the acoustic honeycomb
lattice by simply displacing the lattice sites away from their
original positions andconnecting nearest-neighbor resonators
with coupling waveguides of the proper length. The space-
dependent displacement for each resonator is given by
ðdx; dyÞ ¼ qð2xy; x2 − y2Þ, where x and y are the original

location of the resonator and q describes the strength of the
strain. This displacement will construct the vector potential
AðrÞ ¼ ð4βq=a0Þðy;−xÞ, which leads to a uniformmagnetic
field B ¼ 8βq=a0.
Once the pseudomagnetic field is formed, Landau levels

can emerge in the energy spectrum. To demonstrate the
existence of acoustic Landau levels, we first calculate
the eigenvalues of a large lattice in the tight-binding
limit. We adopt a honeycomb disk with radius 40a0,
which contains 11 600 resonators. A triaxial strain with
strength q ¼ 0.004=a is applied. The parameters of κ0 ¼
0.056 × c=a0 and β ¼ 1.271 are retrieved by fitting the data
from a finite-element simulation [17]. Figure 1(c) shows,
in ascending order of the state number, the calculated 800
eigenvalues near the Dirac cone region for the strained
lattice. It can be clearly seen that highly degenerate states
and flat levels emerge in the energy spectrum. As a result,
the acoustic quasiparticle subjected to this effective mag-
netic field can follow only cyclotron orbits with discrete
energy values. The energy gaps of Landau levels are
proportional to

ffiffiffiffiffiffiffi
BN

p
(N is the level number), being

consistent with the behavior of Dirac fermions in a strong
magnetic field. Note that the states connecting the dis-
cretized Landau levels are localized on the edges. It is these
edge states that contribute to the Hall conductivity in the
quantum Hall effect [1,13].
To facilitate potential experiments, we now consider

a smaller disk with radius 6a0, which contains only 262
resonators. The triaxial strain with different strengths of
q ¼ 0.000=a, q ¼ 0.015=a, and q ¼ 0.030=a are applied
to the disks, as shown in Figs. 2(a)–2(c), respectively. Note
that the strain strength q ¼ 0.030=a, if a piece of graphene
were strained to this extent, would yield a pseudomagnetic
field of 8590 T. The eigenvalues of the states calculated
from commercial software COMSOL Multiphysics are shown in
Figs. 2(d)–2(f) for the three cases ordered with increasing

FIG. 1. (a) Top and side views of a unit cell of the acoustic honeycomb lattice. The unit cell consists of two identical resonators at
inequivalent sites. Each pair of nearest-neighbor resonators is connected with a thin coupling waveguide. (b) The Dirac cone spectrum in
a square area with a side length of 0.4π=a locates at a corner of the Brillouin zone. (c) Triaxial-strain-induced acoustic Landau levels
near the Dirac region. A disk with radius 40a0which consists of 11 600 resonators is adopted in the calculation. The strength of the
triaxial strain is q ¼ 0.004=a. The numbers indicate the orders of Landau levels.
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strain. In Fig. 2(d), the unstrained lattice shows a continu-
ous eigenfrequency spectrum near the Dirac cone region,
whereas for the triaxially strained lattice in Fig. 2(e) with
strain strength q ¼ 0.015=a, the Landau energy quantiza-
tion emerges and results in band gaps between the 0th-order
and �1st-order Landau levels in the frequency ranges of

ð0.231; 0.252Þ × 2πc=a0 and ð0.267; 0.286Þ × 2πc=a0.
With the increased strain of q ¼ 0.030=a in Fig. 2(f), as
the effective magnetic field doubles, these band gaps
expand to frequency ranges of ð0.223; 0.252Þ × 2πc=a0
and ð0.266; 0.298Þ × 2πc=a0. In other words, the gap sizes
in Fig. 2(f) are roughly 1.5 times those in Fig. 2(e), being

FIG. 2. (a)–(c) Schematics of the unstrained and strained acoustic lattices with increasing strength of triaxial strain (a) q ¼ 0.000=a,
(b) q ¼ 0.015=a, and (c) q ¼ 0.030=a. A disk is adopted in the calculation. It has a radius of 6a0 which consists of 262 resonators.
(d)–(f) The eigenvalues of the acoustic lattices are plotted in terms of the state number in the ascending order. (d) Without strain, the
frequency spectrum shows a continuous behavior. (e),(f) The band gaps emerge and widen with increasing strain.

FIG. 3. The logarithmic plots of inverse participation ratio values for the strain strength of (a) q ¼ 0.000=a, (b) q ¼ 0.015=a, and
(c) q ¼ 0.030=a, respectively. With increasing IPR values, the eigenstates become more and more localized. (d)–(f) The localization
features of the eigenstates with different IPR values for the lattice with a strength of strain (d) q ¼ 0.000=a, (e) q ¼ 0.015=a, and
(f) q ¼ 0.030=a. X represents the state number, and Y is log10ðIPRÞ. The thermal color indicates the amplitude of the acoustic pressure.
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consistent with the energy gaps of Landau levels that
increase as ∼

ffiffiffiffiffiffiffi
BN

p
. With increased strain, the states of the

0th-order Landau level becomes more flat and thus
achieves higher degeneracies, leading to slower acoustic
wave propagation. There can be relatively more edge states
connecting the Landau levels, as is seen in Fig. 2(f)
between the −1st-order and 0th-order levels. Note that
the Landau levels of higher orders can also be labeled, in
principle, based on the relationship of ∼

ffiffiffiffiffiffiffi
BN

p
, where the

coefficient can be obtained through data fitting.
The localization feature of the eigenstates can be

characterized by calculating the inverse participation ratio
[19,20], i.e., IPR ¼ R jpj4dr=ðR jpj2drÞ2, where p is the
acoustic pressure. The IPR value is a measure of the portion
of the space where the amplitude of the wave function
differs markedly from zero. A small value of the IPR
corresponds to a delocalized (extended) state, whereas a
large value means the state is localized. Figures 3(a)–3(c)
show the logarithmic plots of the IPR for the above three
strain strengths. For the unstrained lattice, most log10ðIPRÞ
values are maintained around −3.9. These states are all
extended states, one of which is demonstrated in the lower
panel in Fig. 3(d), where the color represents the amplitude

of the acoustic pressure. Several states near the state
number 142 (near the Dirac point) acquire relatively high
log10ðIPRÞ values because of their localization at the edges.
One example with a log10ðIPRÞ value of −3.55 is shown in
the upper panel in Fig. 3(d). When the strain increases, the
values of log10ðIPRÞ near the Dirac region (state number
ranges from about 100 to 200) increase, indicating that
states become more and more localized. Note that the sharp
peaks with log10ðIPRÞ values around −2 in Fig. 3(c) are the
strongly confined edge states localized in the coupling
waveguides at edges. To demonstrate the localized states in
detail, we plot the eigenstate pattern in Figs. 3(d)–3(f). For
the strain with a strength of q ¼ 0.015=a, the states with
numbers of 151 and 169 [log10ðIPRÞ values of −3.65 and
−3.50, respectively] are shown in Fig. 3(e). For the strain
with a strength of q ¼ 0.030=a, the states with numbers
of 135 and 154 [log10ðIPRÞ values of −3.36 and −3.33,
respectively] are demonstrated in Fig. 3(f). The acoustic
pressure patterns manifest that the strain introduces local-
ized states not only on the edges but also inside the bulk of
the sample.
We then propose a simple scheme that can be adopted

in an experiment to verify the existence of Landau levels

FIG. 4. (a)–(c) The excitation of acoustic waves at the edges of the unstrained and strained lattices with the strength of
(a) q ¼ 0.000=a, (b) q ¼ 0.015=a, and (c) q ¼ 0.030=a. The operating frequency of the source is 0.281 × 2πc=a0 (5565 Hz). The
black arrow points to the location of the acoustic source. The extended state is excited in panel (a). Highly confined states are excited in
panels (b) and (c), because the frequency locates in the band gap between 0th-order and 1st-order Landau levels. (d)–(f) In the aperiodic
lattice with a strain strength of q ¼ 0.015=a, the excitation frequency of the source is (d) 0.237 × ð2πc=a0Þ, (e) 0.261 × ð2πc=a0Þ, and
(f) 0.293 × ð2πc=a0Þ, respectively. The intensity profiles show the transition from localization (d) to spreading (e) to localization (b) to
spreading (f). The thermal color indicates the amplitude of the acoustic pressure.
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with an acoustic measurement. By fixing the operating
frequency of 0.281 × 2πc=a0 (or 5565 Hz for a ¼ 0.01 m),
we can put a sound source, as indicated by the black arrow
in Figs. 4(a)–4(c), at edges of the unstrained and strained
lattices, to excite the same resonator. In Fig. 4(a), the
acoustic pressure spreads into the bulk of the unstrained
lattice because of the excitation of the extended bulk state.
For strained lattices, the Landau levels emerge, and the
current operating frequency locates inside the band gap
between the 0th-order and 1st-order Landau levels. As a
result, in Fig. 4(b), the strong localization on one edge
makes the sound energy confined. The larger band gap in
Fig. 4(c) leads to a shorter decay length and tighter
confinement. To further verify the Landau quantization
in the frequency spectrum, we choose the strained lattice in
Fig. 4(b) and simulate the acoustic field by setting the
source frequency to 0.237 × 2πc=a0, 0.261 × 2πc=a0, and
0.293 × 2πc=a0 (or 4700, 5158, and 5808 Hz for
a ¼ 0.01 m) as shown in Figs. 4(d)–4(f), respectively.
Figure 4(d) shows that the acoustic pressure profile is
confined at the edge, because the frequency locates in the
band gap between −1st-order and 0th-order Landau
levels. The acoustic wave that spreads into the bulk in
Fig. 4(e) demonstrates one localized eigenstate within
the 0th-order Landau level. With a higher frequency
as in Fig. 4(f), the acoustic wave again spreads into
the bulk. Together with the acoustic pressure profile
in Fig. 4(b), this process of localization-spreading-
localization-spreading as the frequency increases can
verify the existence of Landau levels as well as the band
gaps between them.
In conclusion, we introduce the strain-induced gauge

fields into an acoustic structure and construct a uniform
effective magnetic field that is difficult in previous periodic
acoustic structures. This uniform magnetic field enables the
emergence of discretized Landau levels separated by
significant band gaps in the energy spectrum for airborne
acoustic wave propagation. The strong gauge field gen-
erated in acoustics and the simple implementation approach
open the door to previously inaccessible magneticlike
effects, which may find use in sound enhancement as in
nonlinear acoustics and sound sensing as in biomedical
imaging.
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Note added.—Recently, we came across a preprint [21]
proposing an application of strain engineering in mechani-
cal metamaterials to engineer Landau levels for lattice
vibrations.
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