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We present a theoretical approach to investigate the effect of dispersion in dynamical systems commonly
described by time-delay models. The introduction of a polarization equation provides a means to introduce
dispersion as a distributed delay term. The expansion of this term in power series, as usually performed to
study the propagation of waves in spatially extended systems, can lead to the appearance of spurious
instabilities. This approach is illustrated using a long cavity laser, where in the normal dispersion regime
both the experiment and theory show a stable operation, while a modulation instability, commonly referred
as the Benjamin-Feir instability, is observed in the anomalous dispersion regime.
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Time-delay dynamical systems (TDDS) have been
successfully used to describe a variety of problems ranging
from population and neural dynamics in biological sciences
[1–3] to short pulse formation and the appearance of
instabilities in laser physics [4–7]. They also appear in
control [8], modeling of climate [9], modern computational
methods [10,11], and the dynamics of coupled oscillators
[12,13]. In each of these problems, delay is a direct
consequence of wave propagation without dispersion.
However, waves of different physical origin such as
electromagnetic, acoustic, or water waves are subject to
dispersion when propagating in a medium with the phase
velocity depending on the frequency of the wave. In a
nonlinear medium the interplay between dispersion and
nonlinearity can give rise to a modulation instability [14]
and soliton formation [15]. A commonly adopted approach
to describe these phenomena is based on the application of
nonlinear Schrödinger and complex Ginzburg-Landau
(CGL)-type equations where the second and higher order
chromatic dispersions are described by time derivatives of
different orders. An important disadvantage of such models
is that they assume the mean field approximation and are
usually valid only in a small vicinity of the bifurcation
point. Although TDDS are free from such limitations,
an accurate mathematical description of the effect of
dispersion of propagating waves in these models presents
a big challenge. This Letter aims to close the gap and to
provide a framework to study the effect of chromatic
dispersion on the dynamics of TDDS. The dispersion is
taken into account by introducing a distributed delay
polarization term into the model equations. We show that
unlike the Ginzburg-Landau type models where different-
order dispersions are usually represented by the derivatives

of the corresponding orders, this term cannot be expressed
as a power series of temporal derivatives, since any
truncation of such an expansion leads to the appearance
of a spurious instability. We apply the proposed framework
to a ring laser incorporating a semiconductor amplifier as a
gain medium and a long dispersive optical fiber delay line.
Previously, we investigated experimentally the stability of
this laser in the absence of dispersion and explained its
behavior using a TDDS [16]. Here we observe a similar
behavior both experimentally and numerically in the case
of normal dispersion. On the contrary, in the case of
anomalous dispersion we observe the appearance of a
modulation instability similar to the Benjamin-Feir insta-
bility observed in the CGL equations.
Model equations of TDDS depend not only on the current

state vector UðtÞ, but also on the past states Ukðt − TkÞ,
whereTk are the delay times k ¼ 1;…; n.Without the loss of
generality we can assume that we have only a single delayed
variable Aðt − TÞ ¼ U1ðt − TÞ and a single delay time
T1 ¼ T in the model equations. The starting point of our
analysis is based on the representation of TDDS as a one
dimensional dynamical system where the variable aðt; zÞ ¼
aðt − z=c; 0Þ is a solution of the unidirectional wave
equation ð1=cÞat þ az ¼ 0 on the interval 0 ≤ z ≤ L,
with AðtÞ≡ aðt; 0Þ and Aðt − TÞ≡ aðt; LÞ ¼ aðt − T; 0Þ.
The dispersion is then introduced via a linear polarization
term pðt; zÞ in the wave equation:

1

c
∂a
∂t þ

∂a
∂z ¼ pðt; zÞ: ð1Þ

In the frequency domain p̂ is proportional to âðω; zÞ via the
susceptibility χðω; zÞ as

PRL 118, 193901 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

0031-9007=17=118(19)=193901(6) 193901-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.193901
https://doi.org/10.1103/PhysRevLett.118.193901
https://doi.org/10.1103/PhysRevLett.118.193901
https://doi.org/10.1103/PhysRevLett.118.193901


p̂ðω; zÞ ¼ χðω; zÞâðω; zÞ: ð2Þ
Equations (1) and (2) are integrated in the comoving

reference frame (t0 ¼ t − z=c and z0 ¼ z) to get âðω; LÞ

âðω; LÞ ¼ âðω; 0Þe
R

L

0
χðω;zÞdz; ð3Þ

and aðt; LÞ is obtained by performing the inverse-Fourier
transform of (3).
In this Letter, we assume that χðω; zÞ ¼ χðωÞ is homo-

geneous in z; hence, without loss of generality χðωÞ can be
decomposed in a sum of Lorentzians

χðωÞ ¼ −
Z

nðω0Þ
Γðω0Þ þ iðωþ ω0Þ

dω0; ð4Þ

where nðω0Þ is the density of states.
For a single Lorentzian,

χðωÞ ¼ −σ
Γþ iðωþΩÞ ; ð5Þ

with central frequency Ω and full-width at half-maximum
Γ, corresponding to nðω0Þ ¼ σδðω0 − ΩÞ, one can write

aðt; LÞ ¼ aðt − T; 0Þ þ Pðt − TÞ ¼ Aðt − TÞ þ Pðt − TÞ;
ð6Þ

where

PðtÞ ¼ −σL
Z

t

−∞
e−ðΓþiΩÞðt−sÞ J1½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σLðt − sÞp �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σLðt − sÞp AðsÞds:

ð7Þ
The relation (6) gives an expression for the output field from
the dispersive delay line. Therefore, in order to account for
the effect of dispersion in the model equations we need to
replace in these equations the output field Aðt − TÞ from a
dispersionless delay line with that calculated in the presence
of chromatic dispersion:Aðt − TÞ þ Pðt − TÞ. The resulting
set of equations with distributed delay describes the behavior
of the TDDS in the presence of dispersion and the usual tools
of nonlinear dynamics theory can be applied to study the
stability and bifurcations of various solutions.
We note that if we decompose the exponent in (3) in a

power series at the pointω ¼ 0 near the central frequency of
our TDDS, then the truncation of this series at some N ≥ 0

leads to dispersion in the form PðtÞ ¼ P
N
0 βnAðnÞðtÞ. Here

βn describes the effect of the nth order dispersion near the
central frequency. Since polarization PðtÞ appears as a delay
term in Eq. (6), the highest order delayed derivative arises
from the Nth order dispersion term of the expansion. This
results in equations with delayed highest derivative formally
equivalent to equations with negative delay (time advance),
which break the causality principle and are known to exhibit
spurious instabilities.

To illustrate the application of our method to a specific
physical problem, we shall now consider the example of a
fiber ring laser incorporating a semiconductor optical
amplifier and a tunable filter, as shown in Fig. 1(a). The
influence of the dispersion was investigated by varying the
filter transmission wavelength from 1280 to 1360 nm and
the fiber length from 17 m to 20 km. The laser dynamics
was analysed by a dc-coupled broadband 12 GHz photo-
receiver and a real time oscilloscope of 12 GHz bandwidth.
When the laser operated in the normal dispersion regime

(i.e., wavelengths below 1317 nm), the laser exhibited a
behavior similar to that experimentally observed and
theoretically explained in the dispersion free regime
[16]. In short, we could observe continuous wave (cw),
chaotic outputs, and random switching between these
solutions for the same set of parameters as shown in
Fig. 1 inset (b). A minor redshift of the filter transmission
stabilized the cw solution while a blueshift destabilized the
cw solution and generated a chaotic output. This asym-
metry is apparent in Fig. 2(a) where the filter transmission
wavelength is periodically modulated at a slow frequency
(100 mHz). The laser displayed chaotic oscillations when
the filter is blueshifted and a series of jumps between cw
solutions when the filter is redshifted.
When the laser was set to operate in the anomalous

dispersion regime, only chaotic oscillations occurred as shown
in Fig. 1 inset (c), which were not influenced by any slight
variations of the filter transmission wavelength. When the
filter was quasistatically tuned, the laser output showed a
strong dependence on the filter speed: at a slow modulation
frequency the laser exhibited chaotic output regardless of the
sweep direction [Fig. 2(b)] while as the filter modulation
frequency increased, an asymmetry appeared [Fig. 2(c)];
however, the cw output had never been observed.
To further investigate the influence of the dispersion on

the laser stability, we measured the wavelength at which the
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FIG. 1. (a) Experimental setup of the ring laser. SOA, semi-
conductor optical amplifier; ISO, isolator; SMF, single mode
fiber; FFPTF, fiber Fabry-Pérot tunable filter; WG, waveform
generator. (b) Bistability between the chaos and cw observed in
the case of the normal dispersion. (c) Chaotic dynamics observed
in the case of the anomalous dispersion. (d) Threshold division
for the modulational instability for various fiber lengths: the
bistability regime is observed to the right of the threshold line and
chaos to its left.
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transition from the bistable to chaotic dynamics occurred as
a function of the cavity length and observed that the
instability threshold is inversely proportional to the fiber
length as shown on Fig. 1(d).
To theoretically describe this experiment, we added

chromatic dispersion as a detuned Lorentzian absorption
line to the time-delayed equations described in [16].
By following the formalism described above, we obtain
the following equations:

dA
dt

þ ðγ − iwÞA ¼ γ
ffiffiffi
κ

p
eð1−iαÞG=2½AT þ PT �; ð8Þ

dG
dt

¼ γg½g0 −G − ðeG − 1ÞjAT þ PT j2�; ð9Þ
where AT ¼ Aðt − TÞ; PT ¼ Pðt − TÞ is defined by (7), T
is the cold cavity round trip time, γ is the tunable filter
width, w is the relative position of the central frequency of
this filter. The parameters κ, α, and g0 describe, respec-
tively, the attenuation factor related to nonresonant loss per
cavity round trip, linewidth enhancement factor, and the
pump parameter. In the case of zero dispersion P ¼ 0 the
DDE system (8) and (9) contains a single discrete delay
and coincides with model equations studied in [16,17].
The normal dispersion regime corresponds to Ω > 0 in (5)
and the anomalous dispersion to Ω < 0.
To investigate theoretically the appearance of

modulational instability in the system (8), (9), and (7)
let us consider a cw solution in the form AðtÞ ¼ A0eiνt

and GðtÞ ¼ G0, which together with (7) imply
PðtÞ ¼ ðe−σL=½ΓþiðΩþνÞ� − 1ÞA0eiνt. Following the approach

described in [18] we perform linear stability analysis of cw
solutions A0, G0 in the limit T → ∞. We linearize the
system near the steady state A ¼ ðA0 þ δAeλtÞeiνt,
G ¼ G0 þ δGeλt, and P1 ¼ ðP0 þ δPeλtÞeiνt, with the
relation δP ¼ δAðe−σL=½ΓþλþiðΩþνÞ� − 1Þ following from
(7). Then we get a quadratic characteristic equation for
the quantity Y ¼ e−λT with the coefficients depending on
μ ¼ Imλ in the limit T → ∞ [18,19]. Two branches of
pseudocontinuous spectrum are obtained from the two
solutions Y ¼ Y� of the characteristic equation
Λ�ðμÞ ¼ Reð− lnY�Þ. These branches are shown in
Figs. 3(a) and 3(b) (black curves) indicating the presence
of modulational instability in the anomalous dispersion
regime in Fig. 3(b). Note that if we expand polarization (7)
in the series of time derivatives and truncate this expansion
at any N > 1, we observe the appearance of spurious
instability [see Fig. 3(a), light-colored curves].
In the absence of dispersion (σL ¼ D2 ¼ 0) a cw solution

is always stable with respect to modulational instability
when the central frequency of the spectral filter is tuned
exactly to the frequency of this solution, w ¼ ν
[ð−1=γ2Þ < 0] [16]. In the case of dispersive delay line
σ > 0, the necessary condition for the modulational
instability at w ¼ ν is obtained from the relation
(d2ReΛþ=dμ2Þð0Þ ¼ 0 as [19]

αLD2 < −
1

γ2
; ð10Þ

where the second-order dispersion coefficient per unit
length is given by

D2 ¼ Im
d2

dν2

�
−σ

Γþ iðΩþ νÞ
�
:
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FIG. 2. Experimentally measured dynamics of the laser oper-
ating in a quasistatic regime at the turning point of the filter
transmission wavelength (top curve) for the case of (a) the normal
dispersion region (tuning around 1303 nm, 100 mHz modulation
frequency); (b) the anomalous dispersion region (tuning around
1328 nm, 200 mHz modulation frequency); (c) the anomalous
dispersion region (1600 mHz modulation frequency). Black: the
intensity measured with 12 GHz bandwidth, white: the numeri-
cally filtered intensity.
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FIG. 3. (a) Real parts of two branches of the pseudocontinuous
spectrum ReΛ�ðμÞ in the case of weak normal dispersion (7)
(black line) and for dispersion decomposed up to second
order PðtÞ ¼ β0AðtÞ þ β1A0ðtÞ þ β2A00ðtÞ (light-colored line).
Here, βn ≈ ½−σ=ðΓþ iΩÞn], and Ω ¼ −1, σL ¼ 0.2, Γ ¼ 0.01.
(b) ReΛ�ðμÞ in the case of strong anomalous dispersion,
Ω ¼ −13, σL ¼ 1000.0, ν ¼ 0. (c) Modulational instability
boundary (black) and Turing-like instability [16] boundary (light
or red color) in the anomalous dispersion regime on the plane of
two parameters, dispersion strength σL and the relative frequency
of the cw regime w − ν. The gray region denotes stable cw
solutions. Other parameter values: γ ¼ 1, g0 ¼ 3.0, α ¼ 2,
κ ¼ 0.2, γg ¼ 0.1, w ¼ 0, and Γ ¼ 0.001.
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This condition resembles the modulational instability
criterion for the complex Ginzburg-Landau equation [20].
The sign of the second-order dispersion coefficient D2 is
determined by the sign of Ω for large enough jΩj > Γ

ffiffiffi
3

p
.

In particular, modulational instability (10) at w ¼ ν occurs
only for the case of anomalous dispersionΩ < 0. Moreover,
condition (10) predicts the instability threshold for any
second-order dispersion D2 to be inversely proportional to
the fiber length L, which corresponds to the experimentally
observed relation [see Fig. 1(d)].
We note that one can adiabatically eliminate carrier

density and obtain in the limit of small field intensity a field
equation with delayed cubic nonlinearity, where the mod-
ulational instability condition also takes the form (10) for
w ¼ ν. Moreover, this condition holds for the Stuart-
Landau equation under delayed dispersive feedback, which
can be considered as a generic model describing the
interplay of the nonlinearity and the feedback

dA
dt

¼ ðcþ iwÞA − ð1þ iαÞAjAj2 þ γeiϕ½AT þ PT �; ð11Þ

where c > 0.
Stability analysis of the cw solution for various values of

w − ν in the static regime w ¼ const allows us to under-
stand the asymmetry of the dynamical output of the laser
with respect to the sweeping direction in the quasistatic and
Fourier domain mode-locking regimes [16]. Indeed, in the
case of moderate normal or weak anomalous dispersion
[see Fig. 3(c)], similarly to the case without dispersion, for
w > ν we observe a Turing-type instability of the cw
solution, which leads to a jump from one longitudinal
mode to another for positive sweep direction, whereas for
w < ν and a sufficiently high α factor, the cw regime looses
stability via a weak modulational instability, which results
in the chaotic output of the laser for the negative sweep
direction [16]. One can see from Fig. 3(c) that, when the
strength of the anomalous dispersion d is increased above a
certain threshold, the Turing-type instability at w > ν is
replaced by modulational instability, so that for both signs
of the detuning w − ν the cw solution is destabilized via a
modulational instability. With a further increase of the
dispersion strength, two modulational instability bounda-
ries in Fig. 3(c) merge with one another and the cw regime
becomes always unstable for any values of w − ν.
To investigate the effect of anomalous dispersion on the

dynamics of the ring laser in the quasistatic regime
numerically, we assumed that the central frequency of
the filter is swept periodically in time, w ¼ wðtÞ ¼ Δ sin ρt
[16], where ρ ≪ 1. The effect of dispersion on symmetry
properties of the ring laser output with respect to the sweep
direction is illustrated by Fig. 4. In particular, it can be seen
from Fig. 4(c) that for σL ¼ 600γ, when the small interval
of detuningsw − ν, where the cw regime is stable, is limited
by two modulational instability points [see Fig. 3(b)], a

chaotic output is observed for both sweep directions at low
sweep speed ρ ¼ 10−7. On the contrary, for higher sweep
speed ρ ¼ 5 × 10−6 one can see a weak attraction towards a
cw regime and corresponding jumps in the numerically
filtered field intensity jAj2ðtÞ, see Fig. 4(b). Thus, our
numerical results are in good qualitative agreement with the
experimental results presented in Fig. 2. Moreover, we
could observe chaotic output in the anomalous dispersion
regime with clear jumps in the numerical signal [see
Fig. 4(b)] only for the dispersion strength such that the
cw regime is weakly stable [see Fig. 3(c)]. For weaker
dispersion we observe numerical time traces similar to
Fig. 4(a), whereas for stronger dispersion the jumps
become irregular. Therefore, we conclude that the corre-
sponding experimental behavior [see Fig. 2(c)] could also
be related to the existence of weakly stable cw states that
are not observed in the static regime.
To conclude, we have provided a theoretical framework to

describe the effect of dispersion in a nonlinear system
modeled by a set of DDEs. This approach was successfully
applied to describe the emergence of modulation instability
observed experimentally in a ring cavity laser containing a
long fiber delay line. In particular, we have shown that in the
anomalous dispersion regime the dispersionof the fiber delay
line can destabilize the cw laser operation leading to a
turbulent behavior. This framework could be used to inves-
tigate the impact of dispersion on the dynamics of a broad
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FIG. 4. Numerical solution of the system (8)–(9), (7) forΔðtÞ ¼
Δ0 sin ρt at the turning point of the filter transmission sin ρt ¼ −1
(top) in case of (a) normal dispersion Ω ¼ 13 (modulation
frequency ρ ¼ 10−6); (b) anomalous dispersion Ω ¼ −13
(modulation frequency ρ ¼ 5 × 10−6); (c) anomalous dispersion
Ω ¼ −13 and modulation frequency ρ ¼ 10−7. The black traces
are the recorded time traces and the white traces are numerically
filtered signals. Here, σL ¼ 600, Δ ¼ 5, and other parameters are
as in Fig. 3.
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class of systems commonly described by DDEs. For exam-
ple, this approach could be used to understand the effect of
linear chromatic dispersion on the characteristics of the
mode-locked regime in monolithic multisection lasers and
other nonlinear photonic devices [6,7,10,21–26]. In particu-
lar, taking chromatic dispersion into consideration is
unavoidable when modeling soliton mode-locked lasers
frequently used for generation of femtosecond pulses [27],
photonic crystal mode-locked lasers [25], as well as many
other fiber, solid state, and semiconductor [28] optical
systems. Using the asymptotic techniques described in
[29] and integrating, by parts, Eq. (7) in the weak dispersion
regime the laser DDEmodel and the Stuart-Landau equation
can be reduced near the instability point of trivial zero
intensity solution to the paradigmatic Ginzburg-Landau
equation, which (unlike the equation derived in [29]) can
demonstrate a dispersion induced modulational instability.
This means that the turbulent behavior discussed above is a
general phenomenon in many dispersive nonlinear systems
exhibiting an Andronov-Hopf bifurcation and does not
depend on the properties of a particular system under
consideration.
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