
Experimental Determination of η=s for Finite Nuclear Matter

Debasish Mondal,1,2,* Deepak Pandit,1 S. Mukhopadhyay,1,2 Surajit Pal,1 Balaram Dey,3 Srijit Bhattacharya,4 A. De,5

Soumik Bhattacharya,1,2 S. Bhattacharyya,1,2 Pratap Roy,1,2 K. Banerjee,1,2 and S. R. Banerjee1,2
1Variable Energy Cyclotron Centre, 1/AF-Bidhannagar, Kolkata-700064, India

2Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai-400094, India
3Tata Institute of Fundamental Research, Mumbai-400005, India

4Department of Physics, Barasat Government College, Barasat, N 24 Pgs, Kolkata-700124, India
5Department of Physics, Raniganj Girls’ College, Raniganj-713358, India

(Received 21 November 2016; revised manuscript received 4 January 2017; published 11 May 2017)

We present, for the first time, simultaneous determination of shear viscosity (η) and entropy density (s)
and thus, η=s for equilibrated nuclear systems from A ∼ 30 to A ∼ 208 at different temperatures. At finite
temperature, η is estimated by utilizing the γ decay of the isovector giant dipole resonance populated via
fusion evaporation reaction, while s is evaluated from the nuclear level density parameter (a) and nuclear
temperature (T), determined precisely by the simultaneous measurements of the evaporated neutron energy
spectra and the compound nuclear angular momenta. The transport parameter η and the thermodynamic
parameter s both increase with temperature, resulting in a mild decrease of η=s with temperature. The
extracted η=s is also found to be independent of the neutron-proton asymmetry at a given temperature.
Interestingly, the measured η=s values are comparable to that of the high-temperature quark-gluon plasma,
pointing towards the fact that strong fluidity may be the universal feature of the strong interaction of
many-body quantum systems.
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The understanding of fluidity of matter, measured by the
ratio of shear viscosity (η) to entropy density (s), has been
the subject of intense investigations in different areas of
physics. The crucial ratio of η=s is related to the Reynolds
number and is well defined for both relativistic and non-
relativistic fluids [1]. The temperature variation of η=s also
provides the crucial signature for liquid-gas phase tran-
sition in matter. String theoretical calculations have put a
universal lower bound, known as the Kovtun-Son-Starinets
(KSS) bound, such that η=s ≥ ℏ=4πkB [2], kB being the
Boltzmann constant. In strongly coupled systems, momen-
tum transport is highly inhibited, resulting in a small shear
viscosity. The prime examples of such highly correlated
systems are the Bose and the Fermi liquids [3–5] at
extremely low temperatures and the quark-gluon plasma
(QGP), produced at high temperatures [6–8]. These quan-
tum systems have very low η=s (∼5 − 10ℏ=4πkB) [1] and
behave as nearly perfect fluids.
An atomic nucleus is a many-body quantum system in

which the constituent particles, called nucleons, are gov-
erned by strong interaction and show highly correlated
behavior. A finite nucleus, therefore, is an ideal system to
search for near perfect fluidity in matter. Different model-
dependent calculations for η=s have been performed earlier
at intermediate-energy heavy ion collisions in search for a
liquid-gas phase transition [9–12]. The first theoretical
study for η=s in relation to the damping of giant resonances
in nuclei was done by Auerbach and Shlomo [13] within
the framework of Fermi liquid drop model (FLDM) [14].

They showed that η=s values for heavy and light nuclei
were ∼ ð4 − 19Þℏ=4πkB and (2.5–12.5) ℏ=4πkB, respec-
tively. Recently, Dang [15] has proposed a formalism,
based on the Green-Kubo relation and the fluctuation
dissipation theorem, relating the shear viscosity to the
width and the energy of giant dipole resonance (GDR)
in hot finite nuclei. The empirically calculated values
of η=s for different systems have been compared with
various model calculations. A model-independent high-
temperature limit of η=s has also been proponed for finite
nuclear systems.
Viscosity is inherently related to the damping of the

GDR, which is conceived, macroscopically, as out of phase
oscillation (isovector) of the proton fluid against the
neutron fluid. It is a highly damped motion characterized
by a very small lifetime (∼10−21 − 10−22 sec). According
to the Brink-Axel hypothesis [16], the GDR can be built on
the ground state as well as on every excited state of the
nucleus. The GDR built on the ground state (henceforth
called as the ground state GDR) is studied by photo
absorption reactions, while that built on excited states is
studied by fusion evaporation and inelastic scattering
reactions. The line shape of the GDR is a Lorentzian,
characterized by the peak energy (EGDR), the width (ΓGDR),
and the resonance strength (SGDR). It is observed, both
experimentally and theoretically, that the EGDR and SGDR
do not depend on the excitation energy (E�), but ΓGDR
increases with the increase in E�. ΓGDR also depends on the
angular momentum (J), owing to the J-induced change in
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shape [17]. However, the effect is observed above a critical
angular momentum given by Jc ¼ 0.6A5=6 [18]. The
detailed discussions on giant resonances could be found
in the monologues [19,20]. It is seen that the ground state
width of the GDR increases with the decrease in mass
number of the nucleus. This suggests that the damping
mechanism of the GDR is indeed similar to that of a viscous
fluid where the modulus of decay (τ) (resonance width is
inversely proportional to τ) of the oscillation decreases with
the decrease in system volume [21]. In the hydrodynamic
description of giant resonances proposed by Auerbach and
Yeverechyahu [22], the viscosity of nuclear fluids provides
the mechanism for the damping of the giant states. The
above description reproduces the mass dependence of the
ground state GDR width, with ηðT ¼ 0Þ ∼ 1u, where
1u ¼ 10−23 MeV s fm−3 [13,22]. Microscopically, the dis-
sipative behavior is described in terms of interparticle
collisions. In case of the GDR, microscopically depicted
as coherent superposition of 1p1h states, the dissipation
due to collision is formalized by taking into account the
coupling of the GDR state to 2p2h and higher order
particle-hole configurations. This gives rise to the spread-
ing width (Γ↓) of the GDR built on the ground state of the
nucleus. It should be mentioned that apart from Γ↓, the
ground state GDR width also comprises of Landau width
(ΓLD) and escape width (Γ↑). In case of the GDR built on
excited states of atomic nuclei, the temperature-driven
distortion in the nucleon momentum distribution leads to
the opening of phase space, thereby creating many particle-
particle (pp) and hole-hole (hh) configurations. The GDR
state, apart from coupling to ph configurations, also
couples to these pp and hh configurations. This leads to
the increase in the GDR width [23,24]. An eloquent
description of the increase in GDR width due to the phase
space opening has also been provided in a semiclassical
collision approach by Baran et al. [25]. The above
discussions on the macroscopic and the microscopic
approaches to the dissipation of the GDR clearly establish
a qualitative relation between the shear viscosity of the
nuclear matter and the damping of the GDR, owing to the
two-body nucleonic interaction in nuclei.
In this Letter, we report the first systematic simultaneous

experimental determination of η, s, and hence, η=s for
equilibrated finite nuclear matter. We have utilized the
prescription of Ref. [15] to extract η from the measured
GDR energies and widths. The entropy density s has been
deduced from the precisely determined nuclear temperature
and temperature-dependent nuclear level density (NLD)
parameter [aðTÞ], which is a measure of the single-particle
density of states at the Fermi surface. The GDR was
populated by light-ion-induced (α) fusion reactions. The
importance of light ion lies in the fact that the compound
nuclei are populated at angular momenta (J), much less
than the critical angular momenta for the systems.
Consequently, there was no J-driven increase in the

GDR width, and we could exclusively probe the temper-
ature (T) dependence of the GDR width and thus, η.
The experiments were performed at the Variable Energy

Cyclotron Centre (VECC), Kolkata using α beams from
the K-130 cyclotron. The nuclei 31P, 97Tc, 119Sb, and
201Tl were populated at different excitation energies in
the following compound nuclear reactions: 4He ðEbeam ¼
28; 35; 42 MeVÞ þ 27Al → 31P�, 4He ðEbeam¼ 28;35;42;
50MeVÞþ 93Nb→ 97Tc�, 4He ðEbeam¼30;35;42MeVÞ þ
115In→119Sb�, 4He ðEbeam ¼ 35; 42; 50 MeVÞ þ 197Au →
201Tl�. It should be mentioned that the experimental data
for 97Tc, 119Sb, and 201Tl systems have earlier been utilized
to explore the low temperature variation of the GDR width
[26–28]. The high-energy γ rays from the decay of the
GDR were measured by a part of the LAMBDA spec-
trometer [29]. Though the angular momentum populated in
the compound nucleus (CN) does not affect the GDR
parameters, determination of angular momentum is crucial
for a precise evaluation of nuclear temperature. Hence, a
50-element multiplicity filter [30] was used to measure the
compound nuclear angular momenta in an event-by-event
mode. The cyclotron rf time spectrum was also recorded
with respect to the multiplicity filter to ensure the selection
of beam-related events. The angular distributions of
high-energy γ spectra were also measured for 31P and
119Sb at Ebeam ¼ 42 MeV. Different angular-momentum-
gated high-energy γ spectra were reconstructed in the off-
line analysis by the cluster summing technique [29]. The
neutron and the pile-up events were rejected by time of
flight (TOF) and pulse shape discrimination (PSD) tech-
niques, respectively. Evaporated neutron energy spectra
were also measured, in coincidence with the multiplicity γ
rays, by a liquid-scintillator-based neutron TOF detector
[31]. The n − γ discrimination was accomplished following
the PSD technique comprising of TOF and zero cross-over
time (ZCT). The measured TOF spectra were converted to
neutron energy spectra by taking the prompt γ peak as a
time reference. The details of the experiments could be
found in Refs. [26,27].
The measured fold distributions were mapped onto the

angular momentum space by a realistic technique [30],
based on GEANT3 simulations [32]. Different fold-gated
angular momentum distributions were simulated and incor-
porated in a modified version of the statistical model
code CASCADE [33]. It was shown in Ref. [34] that the
asymptotic NLD parameter ( ~a) depends on the angular
momentum. Therefore, ~a were extracted by comparing
the different fold-gated neutron energy spectra, with the
CASCADE predictions properly corrected for detector
efficiency. Simultaneously, the calculated high-energy γ
spectra, along with a bremsstrahlung component para-
metrized as σ ¼ σ0 expð−Eγ=E0Þ, were folded with the
detector response function and compared with the exper-
imental spectra to extract the GDR parameters [resonance
strength (SGDR), energy (EGDR), and width (ΓGDR)].
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The center of mass (c.m.) γ-ray angular distribution
was assumed to have the form WðEγ; θÞ ¼ W0ðEγÞ
½1þ a1ðEγÞP1ðcos θÞ þ a2ðEγÞP2ðcos θÞ], and the brems-
strahlung slope parameterE0 was deduced by comparing the
experimentally measured a1ðEγÞ with the theoretically
calculated ones. The extracted slope parameters were con-
sistent with the systematics E0 ¼ 1.1½ðEbeam − VcÞ=A�0.72
[35]. This systematics was utilized at other beam energies
for which angular distributions were not measured. Dif-
ferent fold-gated neutron and high-energy γ-ray spectra for
31P at Ebeam ¼ 42 MeV are shown in Fig. 1 along with the
CASCADE predictions.
The shear viscosity (η) was calculated at different

temperatures from the measured EGDR and ΓGDR by
utilizing the formalism of Ref. [15], according to which,

ηðTÞ ¼ ηð0ÞΓGDRðTÞ
ΓGDRð0Þ

L½ΓGDRðTÞ�; ð1Þ

where L½ΓGDRðTÞ� ¼ ½fEGDRð0Þ2g=fEGDRð0Þ2 − ½ΓGDRð0Þ
=2�2 þ ½ΓGDRðTÞ=2�2g�2. It should be highlighted that the
above prescription was deduced by incorporating a
Lorentzian photo absorption cross section in the Green-
Kubo relation [15]. We preferred the Lorentzian cross
section over the Breit-Wigner cross section because the
experimental GDR parameters were extracted by incorpo-
rating a Lorentzian photo-absorption cross section in
the CASCADE code. As the energy of the GDR built on
excited states is nearly independent of temperature, the
ground state GDR energy EGDRð0Þ was taken as the
average of measured energies (EAV) at different temper-
atures, while the accepted ΓGDRð0Þ for 31P, 97Tc, 119Sb, and
201Tl were 7.5, 5.5, 4.5, 3.5 MeV, respectively [26,28].
Following Refs. [13,15,22], ηð0Þ was taken as 1u.
Interestingly, the ground state GDR widths and average
GDR energies (except for 31P) were well reproduced by the
prescription of Ref. [22], derived using ηð0Þ ¼ 1u (Fig. 2).

This justifies the utilization of ηð0Þ ¼ 1u. ηð0Þ was also
varied, according to the formalism of Ref. [22], keeping all
other parameters fixed as used therein, to reproduce the
ground state GDR widths of 97Tc (upper bound) and 201Tl
(lower bound) (see the caption of Fig. 2). This results in the
lower and the upper limits for ηð0Þ as 0.55u and 1.25u,
respectively. Interestingly, these bounds are quite similar to
that (0.6u and 1.2u) used in Ref. [15], which were obtained
in Ref. [36] by comparing the calculated and the exper-
imental most probable fission-fragment kinetic energies.
These bounds have been considered as systematic errors in
the deduced quantities.
The entropy density was calculated by the relation

sðTÞ ¼ ρ

A
SðTÞ; ð2Þ

where the nuclear density ρ ¼ 0.16 fm−3, and A is
the mass number of the nucleus. The entropy SðTÞ is
calculated following the Fermi gas model prescription as
SðTÞ ¼ 2aðTÞT. aðTÞ was deduced from the experimen-
tally determined asymptotic NLD parameter ~a by using
the Ignatyuk parametrization aðTÞ ¼ ~a½1þ ðΔS=UÞf1 −
expð−γUÞg� [37]. The ground state shell correction values
ΔS, which is the difference of experimentally measured
and liquid drop masses, were −2.23, −0.20, 0.22, and
−8.31 MeV for 31P, 97Tc, 119Sb, and 201Tl, respectively.
These shell correction values were calculated within the
CASCADE code by using the droplet model of Myers and

FIG. 1. Different fold-gated experimental (symbols) (a) neutron
energy spectra (b) high-energy γ-ray spectra along with the
corresponding CASCADE predictions (solid lines) for 31P at
Ebeam ¼ 42 MeV.

(a)

(b)

FIG. 2. Variation of the ground state (a) GDR width and
(b) average GDR energy with the mass number. The symbols
are (a) the accepted ground state GDR widths and (b) the average
of measured GDR energies. The green solid lines are obtained by
using Eqs. (36), (40) and Table (3) of Ref. [22], derived using
ηð0Þ ¼ 1u. The pink dashed lines and the blue dot-dashed lines
were obtained by solving Eq. (27) along with Eqs. (25) and (28)
of Ref. [22], with ηð0Þ ¼ 1.25u and 0.55u, respectively, by the
secant method generalized for complex functions. The errors in
EAV are included but are small enough to be distinguished from
the symbols.
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Swiatecki [38] with the Wigner term. The damping factor γ,
which determines the rate of shell effect depletion with
excitation energy, was 0.054 MeV−1 [39]. T is the temper-
ature corresponding to the excitation energy U and is given
by T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U=aðTÞp

, where U ¼ E� − Erot − EGDR − ΔP,
Erot and ΔP being the average rotational energy and the
pairing energy, respectively. It should be mentioned that ~a
was not extracted from the neutron energy spectrum for
201Tl. The values of ~a used for fitting the high-energy γ-ray
spectra were utilized to extract the entropy density. Except
201Tl, ΔS is very small for all other nuclei. This results in a
minute effect of ΔS and the damping factor (γ) on deduced
aðTÞ and T at the concerned nuclear excitations. However,
following the recent measurements [39,40], an uncertainty
of 0.020 MeV−1 has been included in the damping factor.
This adds to maximum systematic uncertainties of 9% and
4% in aðTÞ and T, respectively for 201Tl at the lowest
excitation. For other masses, these uncertainties are much
smaller. The extracted values of η, s, and η=s for different
systems are shown in Fig. 3 along with the respective
calculations. The errors include the statistical as well as the
systematic ones mentioned earlier.
Interestingly, the deduced shear viscosities are well

reproduced for the systems by the calculations based
on the generalized Fermi liquid drop model (FLDM)
[13,14]. The model directly calculates η by utilizing the
two-body collisional approach and gives ηðTÞ ¼ 2

5
ρϵFτcoll=

½1þ ðωτcollÞ2�, where ϵF is the Fermi energy, ω is the
angular frequency of excitation, and τcoll is the collision
relaxation time given by τcoll ¼ τ0=½1þ ðℏω=2πTÞ2�,
τ0 ¼ ℏα=T2. In the rare collision (zero sound) regime
(which corresponds to giant resonances) ωτ ≫ 1 and
at low temperatures such that T ≪ ℏω, η reduces to
η ¼ 2

5
ρϵFðℏ=4π2αÞ × ½1þ ð2πT=ℏωÞ2�. The parameter α

depends on the in-medium nucleon-nucleon scattering
cross section, and for isovector resonances, its value is
4.6 MeV [14]. The theoretical results are obtained using the
values of ϵF ¼ 37 MeV, corresponding to ρ ¼ 0.16 fm−3

and considering ℏω as the average GDR energy. It is
observed that at low temperatures, η increases with T,
which can be understood qualitatively by the following
arguments. For an equilibrated nucleus, the momentum is
transported by the nucleons. The kinetic theoretical calcu-
lations give η ¼ 1

3
ρmv̄λ, where v̄ is the average velocity of

the nucleons, and the mean free path λ ∼ v̄=Ncoll. In the rare
collision region, the collision frequency Ncoll does not
change much with temperature, while v̄ ∼

ffiffiffiffi

T
p

. Therefore,
the mean free path as well as the nucleon momentum
increase with temperature. That means the momentum can
be transported more efficiently over a large distance,
thereby increasing η with temperature. It has been
observed experimentally in all mass regions that the
GDR width remains constant up to some critical temper-
ature (Tc ¼ 0.7þ 37.5=A) and increases thereafter [26,28].

On the other hand, FLDM predicts a gradual increase of
the GDR width from T ¼ 0 [15]. This could be a possible
reason for the discrepancy in ηðTÞ for 31P as most of the
data are below or near Tc (1.9 MeV). However, for other
masses, most of the data points are above their respective
Tc, resulting in good agreement between theory and
experiment. It is also appealing to note that the measured
entropy density is well reproduced by the calculations.
sðTÞ is estimated utilizing the relation sðTÞ ¼ ðρ=AÞ×
½−Pifi lnðfiÞ −

P

ið1 − fiÞ: lnð1 − fiÞ�, where fi is the
Fermi function given by fi ¼ ½1þ expfðei − μÞ=Tg�−1.
The chemical potential μ is calculated from particle con-
servation, and the single particle energies ei are calculated
using the deformed Woods-Saxon potential with the
universal parameters [41]. As the temperature increases,
the distortion of the Fermi surface becomes larger, thereby
increasing the number of accessible microstates. This
results in the increase of entropy density with temperature.
The deduced η=s shows (Fig. 3) a mild decrease with

temperature. Moreover, it is confined in the range (2.5–6.5)

FIG. 3. (a) Experimental data (symbols) along with the theo-
retical predictions (solid lines) for η (upper panel), s (middle
panel), and η=s (lower panel). Blue short-dashed line (lower
panel) is the KSS bound. The errors in η and η=s include the
statistical errors as well as the systematic error due to the lower
and upper bounds of ηð0Þ.
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ℏ=4πkB for the finite nuclear matter within the temperature
range ∼ ð0.8 − 2.1Þ MeV. Interestingly, the measured η=s
is comparable to that of the QGP [1]. It, therefore, could be
reaffirmed, as pointed out in Ref. [13], that the strong
fluidity is a universal characteristic feature of the strong
interaction of the many-body nuclear systems and not
just of the state created in the relativistic collisions. It is
also fascinating to note that, although η shows a slight
increase with the mass number [Fig. 4(d)] at the highest
available temperature for heavier nuclei, η=s remains
within (5.1–6.5) ℏ=4πkB [Fig. 4(c)] and (4.6–6.1)
ℏ=4πkB [Fig. 4(f)] at the lowest and highest available
temperatures, respectively, for all nuclei. This indicates that
η=s is approximately independent of the nuclear size and
the neutron-proton asymmetry at a given temperature.
However, it could be the artefact of incorporating the same
ηð0Þ for all nuclei. Also owing to large errors, the data are
not sensitive enough to draw any conclusion and thus, call
for further studies. It will also be interesting to extend
this study to the limiting temperature of existence of the
GDR to further investigate the high-temperature limit of
η=s as proposed in Ref. [15].
In summary, we have experimentally determined, for the

first time, the ratio of shear viscosity to entropy density for
the finite nuclear matter at different temperatures. η was
extracted from themeasured isovector giant dipole resonance
energy and width, while s was deduced from the precisely
determined nuclear temperature and nuclear level density
parameter. Both η and s increase with temperature, resulting
in a mild decrease in η=s with temperature. At a given
temperature, η=s is also found to be approximately inde-
pendent of the nuclear size as well as the neutron-proton
asymmetry.Moreover, themeasured η=s remains confined in

the range (2.5–6.5) ℏ=4πkB and thus, establishes that strong
fluidity is the universal characteristic of the strong interaction
of the many-body quantum systems.

The authors sincerely acknowledge the stimulating
discussions with Professor Dinesh K. Srivastava and
Professor Jan-e Alam. The authors also appreciate the
discussions with Dr. Shashi C. L. Srivastava. The authors
are thankful to VECC cyclotron operators for smooth
running of the accelerator during the experiment.

*debasishm@vecc.gov.in
[1] T. Schafer, and D. Teaney, Rep. Prog. Phys. 72, 126001

(2009).
[2] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[3] J. D. Reppy, and D. Depatie, Phys. Rev. Lett. 12, 187

(1964).
[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,

885 (2008).
[5] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.

Phys. 80, 1215 (2008).
[6] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett.

91, 182301 (2003).
[7] H. Masui, J.-Y. Ollitrault, R. Snellings, and A. Tang,

Nucl. Phys. A830, 463c (2009).
[8] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett.

105, 252302 (2010).
[9] S. Pal, Phys. Rev. C 81, 051601(R) (2010).

[10] S. X. Li, D. Q. Fang, Y. G. Ma, and C. L. Zhou, Phys. Rev. C
84, 024607 (2011).

[11] C. L. Zhou, Y. G. Ma, D. Q. Fang, and G. Q. Zhang,
Phys. Rev. C 88, 024604 (2013).

[12] D. Q. Fang, Y. G. Ma, and C. L. Zhou, Phys. Rev. C 89,
047601 (2014).

[13] N. Auerbach and S. Shlomo, Phys. Rev. Lett. 103, 172501
(2009).

[14] V. M. Kolomietz and S. Shlomo, Phys. Rep. 390, 133
(2004).

[15] N. D. Dang, Phys. Rev. C 84, 034309 (2011).
[16] D. M. Brink, Ph. D. thesis, University of Oxford, 1955.
[17] A. Bracco, F. Camera, M. Mattiuzzi, B. Million, M.

Pignanelli, J. J. Gaardhoje, A. Maj, T. Ramsoy, T. Tveter,
and Z. Zelazny, Phys. Rev. Lett. 74, 3748 (1995).

[18] D. Kusnezov, Y. Alhassid, and K. A. Snover, Phys. Rev.
Lett. 81, 542 (1998).

[19] M. N. Harakeh and A. van der Would, Giant Resonances:
Fundamental High-Frequency Mode of Nuclear Excitation
(Clarendon Press, Oxford, 2001).

[20] P. F. Bortignon, A. Bracco, and R. A. Broglia, Giant
Resonances: Nuclear Structure at Finite Temperature
(Harwood Academic Publishers, Amsterdam, 1998).

[21] H. Lamb, Hydrodynamics, 6th ed. (Dover Publications,
New York, 1932), sect. 364.

[22] N. Auerbach, and A. Yeverechyahu, Ann. Phys. (N.Y.) 95,
35 (1975).

[23] N. D. Dang, and A. Arima, Nucl. Phys. A636, 427
(1998).

FIG. 4. Variation of η (upper panel, (a) & (d)), s (middle panel,
(b) & (e)) and η=s (lower panel, (c) & (f)) with the mass number at
the specified temperature range.

PRL 118, 192501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192501-5

https://doi.org/10.1088/0034-4885/72/12/126001
https://doi.org/10.1088/0034-4885/72/12/126001
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.12.187
https://doi.org/10.1103/PhysRevLett.12.187
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/PhysRevLett.91.182301
https://doi.org/10.1103/PhysRevLett.91.182301
https://doi.org/10.1016/j.nuclphysa.2009.10.103
https://doi.org/10.1103/PhysRevLett.105.252302
https://doi.org/10.1103/PhysRevLett.105.252302
https://doi.org/10.1103/PhysRevC.81.051601
https://doi.org/10.1103/PhysRevC.84.024607
https://doi.org/10.1103/PhysRevC.84.024607
https://doi.org/10.1103/PhysRevC.88.024604
https://doi.org/10.1103/PhysRevC.89.047601
https://doi.org/10.1103/PhysRevC.89.047601
https://doi.org/10.1103/PhysRevLett.103.172501
https://doi.org/10.1103/PhysRevLett.103.172501
https://doi.org/10.1016/j.physrep.2003.10.013
https://doi.org/10.1016/j.physrep.2003.10.013
https://doi.org/10.1103/PhysRevC.84.034309
https://doi.org/10.1103/PhysRevLett.74.3748
https://doi.org/10.1103/PhysRevLett.81.542
https://doi.org/10.1103/PhysRevLett.81.542
https://doi.org/10.1016/0003-4916(75)90042-1
https://doi.org/10.1016/0003-4916(75)90042-1
https://doi.org/10.1016/S0375-9474(98)00211-5
https://doi.org/10.1016/S0375-9474(98)00211-5


[24] N. D. Dang and A. Arima, Phys. Rev. Lett. 80, 4145
(1998).

[25] V. Baran, M. Colonna, M. Di Toro, A. Guarnera, V. N.
Kondratyev, and A. Smerzi, Nucl. Phys. A599, 29 (1996).

[26] B. Dey et al., Phys. Lett. B 731, 92 (2014).
[27] S. Mukhopadhyay et al., Phys. Lett. B 709, 9 (2012).
[28] D. Pandit, S. Mukhopadhyay, S. Pal, A. De, and S. R.

Banerjee, Phys. Lett. B 713, 434 (2012).
[29] S. Mukhopadhyay et al., Nucl. Instrum. Methods Phys.

Res., Sect. A 582, 603 (2007).
[30] D. Pandit, S. Mukhopadhyay, S. Bhattacharya, S. Pal,

A. De, and S. R. Banerjee, Nucl. Instrum. Methods Phys.
Res., Sect. A 624, 148 (2010).

[31] K. Banerjee et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 608, 440 (2009).

[32] R. Brun et al., GEANT3, 1986.

[33] F. Puhlhofer, Nucl. Phys. 280, 267 (1977).
[34] P. Roy et al., Phys. Rev. C 86, 044622 (2012).
[35] H. Nifenecker, and J. A. Pinston, Annu. Rev. Nucl. Part. Sci.

40, 113 (1990).
[36] K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys. Rev. C 13,

2385 (1976).
[37] A. V. Ignatyuk et al., Yad. Fiz. 21, 485 (1975) [Sov. J. Nucl.

Phys. 21, 255 (1975)].
[38] W. D. Myers, and W. J. Swiatecki, Ann. Phys. (N.Y.) 84,

186 (1974).
[39] P. Roy et al., Phys. Rev. C 94, 064607 (2016).
[40] P. C. Rout, D. R. Chakrabarty, V. M. Datar, S. Kumar,

E. T. Mirgule, A. Mitra, V. Nanal, S. P. Behera, and
V. Singh, Phys. Rev. Lett. 110, 062501 (2013).

[41] S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, and
T. Werner, Comput. Phys. Commun. 46, 379 (1987).

PRL 118, 192501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192501-6

https://doi.org/10.1103/PhysRevLett.80.4145
https://doi.org/10.1103/PhysRevLett.80.4145
https://doi.org/10.1016/0375-9474(96)00045-0
https://doi.org/10.1016/j.physletb.2014.02.007
https://doi.org/10.1016/j.physletb.2012.01.059
https://doi.org/10.1016/j.physletb.2012.06.033
https://doi.org/10.1016/j.nima.2007.09.008
https://doi.org/10.1016/j.nima.2007.09.008
https://doi.org/10.1016/j.nima.2010.09.046
https://doi.org/10.1016/j.nima.2010.09.046
https://doi.org/10.1016/j.nima.2009.07.034
https://doi.org/10.1016/j.nima.2009.07.034
https://doi.org/10.1016/0375-9474(77)90308-6
https://doi.org/10.1103/PhysRevC.86.044622
https://doi.org/10.1146/annurev.ns.40.120190.000553
https://doi.org/10.1146/annurev.ns.40.120190.000553
https://doi.org/10.1103/PhysRevC.13.2385
https://doi.org/10.1103/PhysRevC.13.2385
https://doi.org/10.1016/0003-4916(74)90299-1
https://doi.org/10.1016/0003-4916(74)90299-1
https://doi.org/10.1103/PhysRevC.94.064607
https://doi.org/10.1103/PhysRevLett.110.062501
https://doi.org/10.1016/0010-4655(87)90093-2

