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By exploiting the similarity between Bloch’s theorem for electrons in crystalline solids and the problem of
Landau gauge fixing in Yang-Mills theory on a “replicated” lattice, we show that large-volume results can be
reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger
[Nucl. Phys. B412, 657 (1994)], corresponds to taking the infinite-volume limit for Landau-gauge field
configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite,
and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given
in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge
theory in two and three space-time dimensions,we are able to evaluate theLandau-gauge gluon propagator for
lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of
the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.
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Introduction.—Since 2007 [1,2], we have known that
very large (physical) volumes are required in lattice
simulations of Yang-Mills theories in the minimal
Landau gauge if one wishes to uncover the true infrared
behavior of Green’s functions, a topic that has attracted
much attention in the past two decades [3]. Indeed, due to
the generation of a dynamical mass mg of a few hundred
MeV in the gluon sector (see Refs. [4–6] and references
therein), one must reach momenta p as small as 50 MeV
in order to generate data at p ≪ mg, allowing a good
description of gluonic correlation functions in the infrared
limit. Since the smallest momentum on a lattice with N
points per direction is 2a−1 sin ðπ=NÞ, where a is the lattice
spacing, the above requisite implies an unfeasibly large
lattice side of about 250 points (for a ≈ 0.1 fm).
Alternatively, one needs good control of the extrapolation
of the data to infinite volume. A step in this direction was
the consideration of exact (upper and lower) bounds for
gluon and ghost propagators [7,8], which can help in
extrapolating the numerical data to large lattice volumes.
In this work, following Zwanziger’s idea [9], we present

a new approach, based on taking the infinite-volume limit
for a Landau-gauge transformation applied to a (replicated)
thermalized field configuration at a given volume V. The
corresponding setup allows one to prove a result similar to
Bloch’s theorem for crystalline solids. As a consequence,
even though one deals with gauge transformations on the
extended lattice, the numerical gauge fixing is actually
done on the original (small) lattice. The extended gauge
transformation is then used to obtain a Landau-gauge-fixed
gluon-field configuration and to evaluate the gluon propa-
gator in momentum space Dðp2Þ.
The Letter is organized as follows. In the next section,

we briefly review Bloch’s theorem and discuss the idea

presented in Ref. [9]. We then show our preliminary
numerical results and, in the last section, we draw our
conclusions.
Bloch waves.—An ideal crystalline solid in d dimensions

is (geometrically) defined by aBravais lattice [10]: an infinite
set of points R⃗ ¼ nμa⃗μ, wherenμ ∈ Z (withμ ¼ 1;…; d), a⃗μ
are d linearly independent vectors, and the sumover repeated
indices is understood. For Bloch’s theorem one also consid-
ers an electrostatic potential Uðr⃗Þ, due to the ions of the
solid, with the periodicity of the Bravais lattice, i.e.,
Uðr⃗Þ ¼ Uðr⃗þ R⃗Þ for any Bravais-lattice vector R⃗. The
corresponding Hamiltonian H for a single electron is then
invariant under translations by R⃗—represented by the oper-
ators T ðR⃗Þ—andwe can choose the eigenstates ψðr⃗Þ ofH to
be also eigenstates of T ðR⃗Þ. Now, since

T ðR⃗ÞT ðR⃗0Þ ¼ T ðR⃗0ÞT ðR⃗Þ ¼ T ðR⃗þ R⃗0Þ; ð1Þ

T ðR⃗Þ has eigenvalues exp ðik⃗ · R⃗Þ ¼ exp ð2πikνnνÞ, i.e.,
T ðR⃗Þψðr⃗Þ ¼ ψðr⃗þ R⃗Þ ¼ exp ðik⃗ · R⃗Þψðr⃗Þ. Here k⃗ ¼ kνb⃗ν
is a vector of the reciprocal lattice:kν ∈ Z (with ν ¼ 1;…; d)
and a⃗μ · b⃗ν ¼ 2πδμν, usually restricted to the first Brillouin
zone. As a consequence, the eigenstates ψðr⃗Þ can be written
as Bloch waves

ψ k⃗ðr⃗Þ ¼ exp ðik⃗ · r⃗Þhk⃗ðr⃗Þ; ð2Þ

where the functions hk⃗ðr⃗Þ have the periodicity of the Bravais
lattice, i.e., hk⃗ðr⃗þ R⃗Þ ¼ hk⃗ðr⃗Þ.
Let us now consider a thermalized link configuration

fUμðx⃗Þg, for the SUðNcÞ gauge group in d dimensions,
defined on a lattice Λx with volume V ¼ Nd and periodic
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boundary conditions (PBCs). Then, following Ref. [9], we
extend Λx by replicating it m times along each direction,
yielding an extended lattice Λz, with lattice volume mdV
and PBCs [11]. We indicate the points of Λz with

z⃗ ¼ x⃗þ y⃗N; ð3Þ

where x⃗ ∈ Λx and y⃗ belongs to the replica lattice Λy:
yμ ¼ 0;…; m − 1. By construction, fUμðz⃗Þg is invariant
under translation by N in any direction.
We now impose the minimal-Landau-gauge condition on

Λz; i.e., we consider the minimizing functional

EU½g� ¼ −
ℜTr

dNcmdV

Xd

μ¼1

X

z⃗∈Λz

gðz⃗ÞUμðz⃗Þgðz⃗þ êμÞ†; ð4Þ

where gðz⃗Þ are SUðNcÞmatrices, êμ is a unit vector in the μ
direction, ℜTr indicates the real part of the trace and †

stands for the Hermitian conjugate. Also, the minimization
is done with respect to the gauge transformation fgðz⃗Þg,
with the link configuration fUμðz⃗Þg kept fixed. The
resulting gauge-fixed field configuration is transverse on
Λz. Note that for fgðz⃗Þg we take PBCs on Λz.
The analogy of the above minimization problem with the

setup for Bloch’s theorem is evident: Λy is a finite Bravais
lattice with PBCs and the thermalized lattice configuration
fUμðz⃗Þg corresponds to the periodic electrostatic potential
Uðr⃗Þ. It is then not surprising that one can prove [9], in
analogy with Eq. (2), that the gauge transformation gðz⃗Þ
that yields a given local minimum of EU½g� can be written as

gðz⃗Þ ¼ eiΘμzμ=Nhðz⃗Þ ¼ eiΘμzμ=Nhðx⃗Þ; ð5Þ

where we make explicit that hðz⃗Þ ∈ SUðNcÞ is invariant
under a shift by N, i.e., hðz⃗þ NêμÞ ¼ hðz⃗Þ. Here, the
vectors z⃗ and x⃗ are related through Eq. (3) and the matrices
Θμ—having eigenvalues 2πnμ=m (with nμ ∈ Z)—can be
written as τaθaμ (with a ¼ 1;…; Nc − 1), where the τa

belong to a Cartan subalgebra of the SUðNcÞ Lie algebra.
It is important to note that, due to Eq. (5) and to cyclicity
of the trace, the minimizing functional EU½g� in Eq. (4)
becomes

EU½g� ¼ −
ℜTr
dNcV

Xd

μ¼1

e−iΘμ=NQμ; ð6Þ

Qμ ¼
X

x⃗∈Λx

hðx⃗ÞUμðx⃗Þhðx⃗þ êμÞ†; ð7Þ

i.e., the numerical minimization, which now includes
extended gauge transformations, can still be carried out
on the original lattice Λx.

The proof of Eq. (5) is quite similar—see Appendix F of
Ref. [9]—to the proof of Bloch’s theorem. Indeed, the
minimizing problem, Eq. (4), is clearly invariant if we
consider a shift of the lattice sites z⃗ byN in any direction êμ,
since this amounts to a redefinition of the origin for Λz.
Note also that, due to cyclicity of the trace, EU½g� is
invariant under (left) global transformations and thus
fgðz⃗Þg is determined modulo a global transformation. As
a result, if fgðz⃗Þg is unique (see discussion below), we must
have

T ðNêμÞgðz⃗Þ ¼ gðz⃗þ NêμÞ ¼ λμgðz⃗Þ; ð8Þ

where λμ is a z⃗-independent SUðNcÞ matrix. At the same
time, by using the relation Eq. (1) for the translation
operators, we obtain that the λμ’s are commuting matrices;
i.e., they can be written as exp ðiΘμÞ ¼ exp ðiτaθaμÞ, where
the τa matrices are Cartan generators. Then, by using
Eq. (3) and applying Eq. (8) reiteratively, we find

gðz⃗Þ ¼ exp ðiΘμyμÞgðx⃗Þ; ð9Þ

where the gauge transformation gðx⃗Þ is defined on the first
lattice Λx of Λz (corresponding to yμ ¼ 0, ∀μ). Thus,
Eq. (5) is immediately obtained if one writes

gðx⃗Þ≡ exp ðiΘμxμ=NÞhðx⃗Þ; ð10Þ

yielding Eqs. (6) and (7). Moreover, due to the PBCs forΛz,
we need to impose the conditions ½exp ðiΘμÞ�m ¼ 1, where
1 is the identity matrix. Clearly, these conditions are
satisfied if the eigenvalues of the matrices Θμ are of the
type 2πnμ=m, with nμ ∈ Z. In the SU(2) case, considered
here, a Cartan subalgebra is one dimensional and, by taking
the third Pauli matrix σ3 as the Cartan generator, one can
write [9] the most general gauge transformation, Eq. (5), as
Θμ ¼ 2πðv†σ3vÞnμ=m with v ∈ SUð2Þ.
Before presenting the numerical results obtained with the

new approach described above, let us discuss the hypoth-
esis of uniqueness for the gauge transformation fgðz⃗Þg,
which is essential for Eq. (8) to be valid. In Ref. [9] the
gauge fixing on Λz is considered only for the absolute
minima of the minimizing functional, belonging to the
interior of the so-called fundamental modular region. Since
these minima are unique (see proof in the Appendix A of
the same reference), the implicit assumption made in
Ref. [9] is that the gauge transformation fgðz⃗Þg that
connects the unfixed, thermalized configuration fUμðz⃗Þg
to the (gauge-fixed) absolute minimum fUðgÞ

μ ðz⃗Þg is also
unique, modulo a global transformation, thus implying
Eq. (8). However, the same hypothesis also applies to a
specific local minimum. Indeed, even though local minima
can be degenerate, a specific realization of one of these
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minima also requires a specific and unique fgðz⃗Þg (up to a
global transformation) when starting from a given fUμðz⃗Þg.
Numerical simulations.—The numerical minimization of

the functional EU½g�, defined in Eqs. (6) and (7), can be
done recursively, using two alternating steps: (i) the matri-
ces Θμ are kept fixed as one updates the matrices hðx⃗Þ by
sweeping through the lattice using a standard gauge-fixing
algorithm [12] and (ii) the matricesQμ are kept fixed as one
minimizes EU½g� with respect to the matrices Θμ, belonging
to the corresponding Cartan subalgebra. After the gauge
fixing is completed, one can evaluate the gauge-trans-

formed link variables UðgÞ
μ ðz⃗Þ ¼ gðz⃗ÞUμðz⃗Þgðz⃗þ êμÞ†.

Then, considering Eqs. (9) and (10), and the invariance
of Uμðz⃗Þ under translation by N, it is clear that the

dependence of UðgÞ
μ ðz⃗Þ on the yμ coordinates is rather

trivial. As a consequence, the gluon propagator evaluated
with extended gauge transformations is nonzero only for a
subset of the lattice momenta available on the extended Λz
lattice [13].
Here we present data for the two- and the three-dimen-

sional cases, for which it is feasible to simulate at
considerably large lattice volumes (without the use of
extended gauge transformations). This allows a comparison
of the new approach with the traditional method at small
momenta, for which finite-size effects are larger. Indeed,
such effects are strongest in the d ¼ 2 case, since the gluon
propagator is of the scaling type [6,7,14], i.e., Dð0Þ ¼ 0 in
the infinite-volume limit. The effects are also very large in
the d ¼ 3 case, for which the gluon propagator is of the

massive type [2,6] but with a clear and pronounced turn-
over point at small momenta [4,6].
As one can see in Fig. 1, the results obtained for an

extended lattice Λz show very good agreement with the
ones obtained with the traditional method for the same
lattice volume, while the results from the corresponding
original lattice Λx deviate considerably from the large-
lattice results in the infrared limit.
Conclusions.—We have investigated an analogue of

Bloch’s theorem for (lattice) Landau gauge fixing [9],
which arises because the Landau-gauge condition leaves a
residual global transformation unfixed. The chosen pro-
cedure also resembles the limiting sequence of domains in
the Fisher-Ruelle construction of infinite-volume statistical
mechanics [15]. We find that, at least in the gluon sector,
large-lattice data are reproduced by simulations at much
smaller volumes with extended gauge transformations, thus
reducing memory usage by a huge factor (at least up to 16d

for d ¼ 2, 3). The only limitation of the approach in its
present form is that the allowed momenta are set by the
discretization on the original (small) lattice Λx (see Fig. 1
and discussion in the previous section).
Our work suggests that there are two different mass

scales in the theory, one related to the thermalization and
another to the gauge fixing, the latter being much smaller
than the former. Typically, in the four-dimensional SU(3)
case, the two scales would correspond to mg ∼ 500 MeV
and to the lowest glueball mass, i.e., ∼1500 MeV. The
present numerical approach, although introduced in
Ref. [9] for analytic reasons, seems suitable to handle both

FIG. 1. The gluon propagatorDðp2Þ as a function of the lattice momentum p. Left: d ¼ 2 case with β ¼ 10.0, considering original Λx

lattice volumes 802 (filled circle) and 12802 (filled diamond), and an extended Λz lattice volume 802 × 162 ¼ 12802 (filled square).
Right: d ¼ 3 case with β ¼ 3.0, considering original Λx lattice volumes 323 (filled circle) and 2563 (filled diamond) and an extended Λz

lattice volume 323 × 83 ¼ 2563 (filled square). Note that the data for Λx ¼ 12802 at β ¼ 10.0 and for Λx ¼ 2563 at β ¼ 3.0 are,
essentially, infinite-volume results [2,4,6,7,14]. We also note that the strong suppression of Dð0Þ is a peculiar effect of the extended
gauge transformations [13].
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scales, by using the original (small) lattice Λx for thermal-
ization and the extended (large) lattice Λz for gauge fixing.
This also supports the suggestion that the IR properties of
Landau-gauge Green’s functions be essentially determined
by the gauge-fixing procedure [16].
More results and details of the numerical simulations

presented here will be discussed elsewhere [13]. We also
plan to extend this study to the ghost and matter sectors,
and to investigate its impact on properties of the Gribov
region. A possible improvement of the approach is the use
of continuous external momenta [17], which could make
the method more attractive in the d ¼ 4 case.

We thank B. Blossier for discussions and CNPq for
partial support. Simulations were done on the IBM
cluster at USP (FAPESP Grant No. 04/08928-3) and on
the Blue Gene/P supercomputer supported by the Research
Computing Support Group (Rice University) and
Laboratório de Computação Científica Avançada
(Universidade de São Paulo).

[1] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker,
and A. Sternbeck, Proc. Sci., LATTICE2007 (2007) 290;
A. Sternbeck, L. von Smekal, D. B. Leinweber, and A. G.
Williams, Proc. Sci., LATTICE2007 (2007) 340.

[2] A. Cucchieri and T. Mendes, Proc. Sci., LATTICE2007
(2007) 297.

[3] See, e. g., J. Greensite, Lect. Notes Phys. 821, 1 (2011); P.
Boucaud, J. P. Leroy, A. L. Yaouanc, J. Micheli, O. Pene,
and J. Rodriguez-Quintero, Few Body Syst. 53, 387 (2012);
N. Vandersickel and D. Zwanziger, Phys. Rep. 520, 175
(2012).

[4] A. Cucchieri, T. Mendes, and A. R. Taurines, Phys. Rev. D
67, 091502 (2003).

[5] A. Cucchieri, T. Mendes, and A. R. Taurines, Phys. Rev. D
71, 051902 (2005); A. A. Natale, Braz. J. Phys. 37, 306
(2007).

[6] A. Cucchieri, D. Dudal, T. Mendes, and N. Vandersickel,
Phys. Rev. D 85, 094513 (2012).

[7] A. Cucchieri and T. Mendes, Phys. Rev. Lett. 100, 241601
(2008);

[8] A. Cucchieri and T. Mendes, Phys. Rev. D 78, 094503
(2008); 88, 114501 (2013).

[9] D. Zwanziger, Nucl. Phys. B412, 657 (1994).
[10] See, e.g., N. W. Ashcroft and N. D. Mermin, Solid State

Physics (Thomson Learning, USA, 1976).
[11] Let us note that a similar idea has been recently used in C.

Lehner and T. Izubuchi, Proc. Sci., LATTICE2014 (2015)
164, in order to include infinite-volume QED effects into a
finite QCD system.

[12] A. Cucchieri and T. Mendes, Nucl. Phys. B471, 263 (1996);
Nucl. Phys. B, Proc. Suppl. 53, 811 (1997); Comput. Phys.
Commun. 154, 1 (2003).

[13] A. Cucchieri and T. Mendes (to be published).
[14] A. Maas, Phys. Rev. D 75, 116004 (2007); A. Cucchieri and

T. Mendes, AIP Conf. Proc. 1343, 185 (2011).
[15] See, e.g., D. Ruelle, Statistical Mechanics: Rigorous Results

(World Scientific, Singapore, 1999).
[16] Let us note that another illustration of the nontrivial role of

gauge fixing is the fact that the lattice Landau-gauge gluon
propagator at β ¼ 0, i.e., for a completely random link
configuration fUμðx⃗Þg, shows qualitative agreement with
the one at nonzero β, see, e.g., A. Cucchieri and T. Mendes,
Phys. Rev. D 81, 016005 (2010).

[17] See, e.g., P. F. Bedaque, Phys. Lett. B 593, 82 (2004); G. M.
de Divitiis, R. Petronzio, and N. Tantalo, Phys. Lett. B 595,
408 (2004); A. Ramos, J. High Energy Phys. 11 (2014) 101.

PRL 118, 192002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192002-4

https://doi.org/10.1007/978-3-642-14382-3
https://doi.org/10.1007/s00601-011-0301-2
https://doi.org/10.1016/j.physrep.2012.07.003
https://doi.org/10.1016/j.physrep.2012.07.003
https://doi.org/10.1103/PhysRevD.67.091502
https://doi.org/10.1103/PhysRevD.67.091502
https://doi.org/10.1103/PhysRevD.71.051902
https://doi.org/10.1103/PhysRevD.71.051902
https://doi.org/10.1590/S0103-97332007000200023
https://doi.org/10.1590/S0103-97332007000200023
https://doi.org/10.1103/PhysRevD.85.094513
https://doi.org/10.1103/PhysRevLett.100.241601
https://doi.org/10.1103/PhysRevLett.100.241601
https://doi.org/10.1103/PhysRevD.78.094503
https://doi.org/10.1103/PhysRevD.78.094503
https://doi.org/10.1103/PhysRevD.88.114501
https://doi.org/10.1016/0550-3213(94)90396-4
https://doi.org/10.1016/0550-3213(96)00177-0
https://doi.org/10.1016/S0920-5632(96)00789-X
https://doi.org/10.1016/S0010-4655(03)00279-0
https://doi.org/10.1016/S0010-4655(03)00279-0
https://doi.org/10.1103/PhysRevD.75.116004
https://doi.org/10.1063/1.3574971
https://doi.org/10.1103/PhysRevD.81.016005
https://doi.org/10.1016/j.physletb.2004.04.045
https://doi.org/10.1016/j.physletb.2004.06.035
https://doi.org/10.1016/j.physletb.2004.06.035
https://doi.org/10.1007/JHEP11(2014)101

