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We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values
approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of
equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal
relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate
many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The
theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator
exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and XXZ

models.
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The long-standing task to explain macroscopic equili-
bration phenomena in terms of the underlying microscopic
quantum dynamics is presently regaining considerable
attention [1-3]. Since open systems are beyond the realm
of standard quantum mechanics, the common starting point
is an isolated many-body system, possibly incorporating
the environment of the subsystem of actual interest. The
question whether and how such a system or subsystem
approaches some thermal or nonthermal equilibrium state
after a sufficiently long time has been at the focus of
numerous analytical [4-6], numerical [7-12], and exper-
imental [13-18] studies. Despite the reversible and ever-
lasting motion of the microscopic degrees of freedom, it
could be shown in Refs. [19,20] under increasingly weak
assumptions about the system Hamiltonian, the initial
condition, and the considered observable that expectation
values must remain extremely close to a constant value for
the vast majority of all sufficiently late times (the excep-
tional times include initial transients and quantum revivals).

The natural next question is whether the system thermal-
izes, that is, whether the longtime behavior is well
approximated by the pertinent microcanonical expectation
value from equilibrium statistical mechanics. A first promi-
nent criterion for thermalization is the so-called eigenstate
thermalization hypothesis (ETH), postulating that every
energy eigenstate yields expectation values close to the
corresponding microcanonical values [5-8]. In other
words, a violation of ETH is commonly considered an
indicator of nonthermalization [1,6-9]. A related but
different such indicator is the existence of additional
conserved quantities (besides the system Hamiltonian)
which can be written as sums of local operators, and which
play a particularly prominent role for so-called integrable
systems [1]. Numerically, it has been found that such
systems usually violate the ETH and do not thermalize
[7-9]. Instead, the longtime behavior is well captured by a
so-called generalized Gibbs ensemble (GGE), which is
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obtained by the standard working recipe to maximize the
von Neumann entropy under the constraints that the
expectation values of the conserved quantities must be
correctly reproduced [7]. Yet another common distinction
between integrable and nonintegrable systems is the sta-
tistics of the gaps between neighboring energy levels E,
[1]. Further prominent examples which do not thermalize
are systems exhibiting many-body localization (MBL)
[2,11,12,16]. Compared to integrable systems, they are
structurally more robust against small changes of the model
Hamiltonian, but they otherwise seem to be quite similar,
e.g., regarding energy level statistics, conserved quantities,
ETH violation, and the GGE [1,2,21].

The objective of our Letter is a quantitative analytical
description of the temporal relaxation in the absence of
thermalization. Our approach is thus complementary to
the numerical case studies, e.g., in Refs. [9,12,21,22].
Related analytical investigations are also quite numerous
[20,23,24]. Yet, for each of them, a closer look at the
considered systems and the obtained results reveals quite
significant differences from our approach. For instance,
some of them concern only thermalizing systems, others
focus on special observables or on deriving upper and lower
bounds for the temporal relaxation, etc. Particularly little is
known about equilibration time scales in isolated systems
which do not thermalize. Likewise, pertinent experimental
works are still rather scarce [13—17]. A comparison of our
theory with exemplary numerical and experimental results
is provided later.

Going in medias res, letus consider a Hamiltonian H with
eigenvalues E, and eigenvectors |n) and an arbitrary initial
state p(0) (pure or mixed and, in general, far from equilib-
rium). According to textbook quantum mechanics, its tem-
poral evolution is p(r) = U,p(O)U], with U, := e~H!/7,
Hence, the expectation value (A),, == Tr{pA} of an arbitrary
observable A follows as
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<A>p(t) = Z/)mn (O>Anmei(E"_Em)t/h7 (1)

m,n

where A,,, := (m|A|n), p,,.(t) = (m|p(t)|n) and where,
depending on the specific model under consideration, m
and n run from 1 to infinity or to some finite upper limit.
Averaging Eq. (1) over all # > 0 yields the result (A);, where
the diagonal ensemble p is defined via p,,, = 6,,,2,,(0)
[25]. Hence, if the system equilibrates at all, Eq. (1) must stay
extremely closeto (A) ; for practically all sufficiently large 7’s
(see above).

As usual, we focus on systems with a macroscopically
well-defined energy; i.e., all energy levels E, with non-
negligible populations p,,(0) must be contained in an
interval Iy :=[E —¢, E] of macroscopically small (but
microscopically large) width e. Furthermore, we adopt
the idealization that the probability p,,(0) to observe an
energy E, outside /5 can be approximated as strictly zero.
The number of energies E,, contained in I is denoted by D
and, without loss of generality, we assume that n €
{1, ..., D} for all those E,’s. The Cauchy-Schwarz inequal-
ity |punl® < PmmpPun then implies that only m,n < D
actually matters in Eq. (1) and in all that follows.
Specifically, the effectively relevant Hamiltonian is
Hy = Y0, Eyln)(nl.

Denoting by z any permutation of {1, ..., D}, we define

H, = ;En\ﬂ(n)ﬂﬂ(n)l = ;Eﬂ—l(nﬂn)(nl- (2)

Hence, H, is obtained by permuting either the eigenvalues
or the eigenstates of the original Hamiltonian H.

In general, every H , entails a different evolution of p(r).
Accordingly, in Eq. (1) either the energies or the matrix
elements must be permuted analogously as in Eq. (2). On
the other hand, one readily sees that the following impor-
tant quantities and properties are invariant under arbitrary
permutations z: (i) the energy spectrum, and hence the level
statistics; (i1) the violation or nonviolation of the ETH;
(iii) the conserved quantities [26]; (iv) the initial expect-
ation value (A),q). (v) for the vast majority of all
sufficiently large #’s, the expectation value (A),, stays
extremely close to (A) 5» With the same diagonal ensemble p
for all H,’s, and likewise for the GGE.

The main result of our Letter concerns the z and ¢
dependent relaxation of (A),,) and reads

(Ao = (A)y + F(){{A)y0) = (A)p} + &), (3)

F(t) = (Dlp(1)]? - 1)/(D = 1), (4)

D
(ﬁ(l‘) = D—l Z eiE,,t/h' (5)
n=1

The only 7z dependent term on the right-hand side of
Eq. (3) is £,(t) and satisfies, for D > 6, the following key
properties:

GOl =0, [EZ(0)]n < (6A4)’maxp,, (0). (6)

where II denotes the set of all permutations of {1,...,D}
and [- - -]; the average over all 7 € I1. Furthermore, A, is
the measurement range of the observable A, i.e., the
difference between its largest and smallest eigenvalues.
Equations (3)—(6) are exact analytic results when D > 6
and for arbitrary H’s, A’s, and p(0)’s, with p,,,(0) = O for
n > D. Their detailed mathematical derivation is quite
tedious and provides very little physical insight; hence,
it has been postponed to the Supplemental Material [27].
Since a typical many-body system exhibits an extremely
dense energy spectrum (exponential in the degrees of
freedom), it is practically impossible (e.g., in an experi-
ment) to notably populate only a few energy levels; hence,
max,0,,(0) must be unimaginably small [19]. Observing
that 1/D < max,p,,(0) implies that D > 1 in Egs. (4) and
(5), that the number D! of permutations 7 € I1 is gigantic,
and that [£2(¢)]; in Eq. (6) is exceedingly small. As a
consequence, &,(t) itself must be very small for the vast
majority of all z € Il; i.e., we can safely approximate

Eq. (3) by
(A)py = (A)p + F(0){{A) o) — (A)5}- (7)

Specifically, this approximation also applies to the “true”
system H;, unless there are special reasons why its
temporal relaxation should notably differ from that of
practically all other H,’s.

A first very strong argument why the true system may be
expected to exhibit the typical relaxation behavior (7) is the
abovementioned invariances (i)—(v) under arbitrary permu-
tations z. In fact, when considering the corresponding
Hamiltonians H, as a matrix ensemble, our situation is
essentially just a particular instance of random matrix
theory [28], whose predictions are well known to be
surprisingly successful in many cases, provided that the
ensemble preserves a few very basic properties of the true
system of actual interest [28] [e.g., symmetries, or the
invariances (i)—(v) in our case].

On the other hand, usual model Hamiltonians H, only
involve short-range interactions (or local operators) [1,2],
while most other H,’s do not preserve this “local structure.”
Spatial inhomogeneities of particle numbers, energy, etc.
are thus expected to be balanced out increasingly slowly
over increasing distances when H, governs the dynamics,
but not for most other H,’s. Note that instead of permuting
the energy eigenvectors |n) in Eq. (1) according to Eq. (2),
one could replace p(0) by p,(0) := Uip(0)U,, where the
unitary U, is defined via U,|n) = |z(n)) (and likewise for
A, while H; is now kept fixed). Once again, even when
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p(0) = p;(0) exhibits spatial inhomogeneities, one expects
that most other p,(0)’s will appear (nearly) homogeneous;
hence, the local structure of H; yields an untypically slow
relaxation of p(0) [compared to most other p,(0)’s]. In
either case, it follows that our prediction (7) must be
restricted to initial conditions without any significant
spatial inhomogeneities on macroscopic scales.

A typicality result similar to Egs. (3)-(6) was obtained
by formally quite dissimilar methods in Ref. [24].
Conceptually, the essential difference is that arbitrary
unitary (Haar distributed) basis transformations, rather than
just eigenvector permutations in Eq. (2), were admitted in
Ref. [24], resulting in the appearance of the microcanonical
instead of the diagonal ensemble on the right-hand side of
Eq. (3). In contrast to our work, the approach from Ref. [24]
is thus restricted to systems which do thermalize. The main
reason is that the permutations are a tiny subset (of measure
zero) of all unitary basis transformations and thus may
preserve additional key features of the true Hamiltonian
H . For example, permutations preserve each of the above-
mentioned properties (i)—(v), but general unitaries preserve
only (i) and (iv). In return, the smallness of max,,p,,,(0) on
the right-hand side of Eq. (6) is no longer required when
admitting arbitrary unitaries [24]. In passing, we note that
conditions similar to or even identical to max,p,,(0) < 1
already arise in the general equilibration results from
Refs. [19,20].

Turning to the function F(z) in Egs. (4) and (5), one
readily sees that F(0) = land 1 > F(¢) > —1/D forall £’s.
Moreover, the following properties were derived previously
in Ref. [24]: (i) F(¢) remains negligibly small for the vast
majority of all sufficiently large #’s, provided the maximal
energy degeneracy is much smaller than D. (ii) Denoting by
Q(E) the number of energies E, below E, by kpz and
S(E) = kgInQ(E) Boltzmann’s constant and entropy,
respectively, and by T := 1/5'(E) the corresponding formal
temperature, one can often approximate the sum in Eq. (5)
by an integral over a suitably smoothened level density,
yielding the approximation

F(t) = 1/[1 + (tkgT/h)?]. (8)

Note that 7 and S(E) could be identified with the usual
temperature and entropy for a thermalized system, but they
have no immediate physical meaning for nonthermalizing
systems.

Besides integrability and MBL, yet another (quite trivial)
reason for nonthermalization may be that the non-negligible
level populations p,,,(0) are not confined to a macroscop-
ically small energy interval [see above Eq. (2)]. Incidentally,
this case can also be readily included in our present theory,
namely, by choosing D and the labels n so that n €
{1,...,D} if and only if p,,(0) is non-negligible. As a
consequence, Eq. (8) is, in general, no longer valid, while all
other findings remain essentially unchanged.
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FIG. 1. (Symbols) The experimentally measured Hamming

distance D(¢) from Fig. 3(a) of Ref. [16] for W = 4J,,,,,, averaged
over 30 realizations of the disorder in Eq. (9). (Line) Corre-
sponding theory from Eq. (7). (Insets) Theory (red curves) and
numerical solutions (blue curves) for two representative realiza-
tions of the disorder in Eq. (9).

As a first example, we consider the experiment by Smith
etal. [16] with N = 10 ions in a linear Paul trap, emulating
the disordered Ising Hamiltonian

HzZJ,-pj‘Jj—i—?de—kZ%df 9)

i<j

with i, j =1, ..., N, the Pauli matrices o}, the couplings
Ji; = Jmax/|i = jI"13, the homogeneous field B = 4J .
the uniformly distributed random fields D; € [-W, W], and
h = 1. Initializing the spins in the Néel state [1] --- 1),
the system exhibits MBL for disorder strengths beyond
about W = J.. [16]. As was noted in Ref. [22], the

experimentally measured Hamming distance D(t) from
Ref. [16] can be recovered as the expectation value of the
observable A:=(1-M)/2 with M:=N"1Y,(-1)6?
(staggered magnetization).

In Fig. 1, the experimental results are compared with our
theoretical approximation (7), (4) by introducing the
numerically determined energies E, of the Hamiltonian
(9) into Eq. (5). Furthermore, as in the experiment, we
averaged the so obtained results for D(z) over 30 realiza-
tions of the disorder in Eq. (9). Since there are only N = 10
spins, max,p,,(0) is typically not yet very small and
increases with W. We therefore focused on a moderate
disorder of W = 4J,,,«, and we considered labels n with
pan(0) < 0.01 as negligible (see above), resulting in typical
values max,p,,(0) ~ 0.1 and D = 20. The concomitant
approximations for (A) ) turned out to exhibit particularly
strong finite-N effects; hence, we used the a priori known
actual value (A),q) = 0 in Eq. (7).

Besides those disorder averaged results, individual
realizations of Eq. (9) would also seem interesting.
Since experimental data are not available, we replicated
the numerical solutions of the Schrédinger equation with
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FIG. 3. (Symbols) Numerical results from Fig. 1(e) of Ref. [9].

t (ms)

FIG. 2. (Symbols) Experimental mean integrated squared con-
trast from Fig. 3 in Ref. [14] for integration lengths L = 18, 40,
60, and 100 ym (from top to bottom) and vertically shifted by
0.3, 0.2, 0.1, and 0.0, respectively, for better visibility. (Lines)
Theoretical approximation (7), (8) with 7 = 3 nK.

Hamiltonian (9) from Refs. [16,22]. The results for two
realizations are shown in the insets of Fig. 1. The
theoretical curves have been obtained as described above,
employing the same realization of Eq. (9) as in the
numerics in each inset. In view of those quite notable
finite size fluctuations, the theory explains the ‘“real”
temporal relaxation remarkably well.

Next, we consider the equilibration of a coherently split
Bose gas, as observed experimentally by Kuhnert et al. in
Ref. [14] via the mean integrated squared contrast
(C*(L,1)) of the matter-wave interference pattern for
various integration lengths L. This experiment (approx-
imately) realizes an integrable system, exhibiting pretherm-
alization rather than thermalization [13]. The data from
Ref. [14] are compared in Fig. 2 with our theory Eq. (7).
Since modeling the quite intricate observable of the actual
experiment goes beyond our present scope, we treated
(A),(0) and (A) in Eq. (7) as fit parameters for any given L.
Similarly, estimating the experimentally relevant “effective
temperature” T in Eq. (8) from first principles is beyond our
present scope; hence, it was treated as a fit parameter
(common to all L’s), yielding 7 = 3 nK. In fact, Fig. 5 in
Ref. [15] suggests that the experimental estimate 7.4 &
10 £ 3 nK from Fig. 2 (at 7, = 0 ms) in Ref. [13] may also
be a reasonable approximation in our present case. Here,
T 1s yet another effective temperature which would agree
with T at thermal equilibrium, but may well be different
from 7 in our case. Furthermore, the experimental estimate
of T is based on a quite involved procedure [13] whose
implicit premises may only be approximately satisfied. In
conclusion, 7' =3 nK seems still compatible with the
experimental findings, and the resulting theoretical curves
in Fig. 2 explain the main features of the data quite well.

As a third example, we turn to the numerical results for
an integrable model by Rigol [9], consisting of eight hard-
core bosons on a periodic one-dimensional lattice with 24

(Line) Theoretical approximation (7), (8). For further details, see
the text.

sites, and exhibiting nonthermal longtime expectation
values. The detailed definition of the considered observable
on,(t) from Ref. [9] is not repeated here since only
the initial and longtime values are actually needed in
Eq. (7), whose quantitative values cannot be estimated
theoretically anyway and hence are treated as fit param-
eters. Furthermore, we adopted the approximation (8) with
the estimate 7 =2 from Ref. [9] (in units where
kg = h = 1). The resulting agreement with the numerical
data in Fig. 3 is remarkably good, considering that the
system consists of just eight bosons.

Our last example is the integrable XXZ model of Torres-
Herrera et al. from Ref. [29]. Similarly as before, the initial
value (A),) = 0.25 in Eq. (7) is known a priori for the
specific observable under consideration, while (A); is
treated as a fit parameter. On the other hand, F(r) is
now evaluated via Eq. (4) by approximating the discrete
levels on the right-hand side of Eq. (5) by a continuous
level density [24]. In view of Table 1 and Fig. 3(b) in
Ref. [29], we roughly approximated this density as constant
within the energy interval Iy = [—1.8,1.8], and as zero
otherwise. The resulting agreement with the numerics in
Fig. 4 speaks for itself.

In conclusion, we devise in this Letter a general
analytical theory for the temporal relaxation behavior of
isolated many-body systems which do not thermalize. The

FIG. 4. (Symbols) Numerical results for the spin-spin correla-
tion C*(r) from Fig. 8 of Ref. [29] for a spin-1/2 XXZ model with
16 spins, coupling J, anisotropy A = 1/2, 7 = 1, and a so-called
pairs of parallel spins initial condition. (Line) Theoretical
approximation (7), as specified in the text.
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main prerequisites are initial conditions which appreciably
populate many energy levels and do not give rise to
significant spatial inhomogeneities on macroscopic scales.
Specifically, the relaxation must not entail any significant
transport currents, caused by some unbalanced local
densities (of particles, energy, etc.). On the other hand,
the particular reason for the absence of thermalization
(MBL, integrability, broad energy distribution) seems
largely irrelevant. In fact, our theory also applies to systems
which do thermalize, provided that the diagonal and
microcanonical ensembles yield identical expectation val-
ues due to, e.g., the validity of the ETH. Compared to
previous related studies, our main new concept consists in
admitting only permutations of basis vectors in Eq. (2),
rather than arbitrary (Haar distributed) basis transforma-
tions, thus preserving all local constants of motion, the
diagonal ensemble which governs the longtime behavior,
and the violation (or not) of the ETH. The adequate
treatment of inhomogeneous initial conditions remains
an important challenge for future research.

We are indebted to Marcos Rigol for providing the
original data from Fig. 1(e) of Ref. [9]. This work was
supported by DFG Grants No. REI1344/7-1 and
No. RE1344/10-1, and by the Studienstiftung des
Deutschen Volkes.
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