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In supervised learning, an inductive learning algorithm extracts general rules from observed training
instances, then the rules are applied to test instances. We show that this splitting of training and application
arises naturally, in the classical setting, from a simple independence requirement with a physical
interpretation of being nonsignaling. Thus, two seemingly different definitions of inductive learning
happen to coincide. This follows from the properties of classical information that break down in the
quantum setup. We prove a quantum de Finetti theorem for quantum channels, which shows that in the
quantum case, the equivalence holds in the asymptotic setting, that is, for large numbers of test instances.
This reveals a natural analogy between classical learning protocols and their quantum counterparts,
justifying a similar treatment, and allowing us to inquire about standard elements in computational learning
theory, such as structural risk minimization and sample complexity.
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Real-world problems often demand optimizing over
massive amounts of data. Machine learning algorithms
are particularly well suited to deal with such daunting tasks:
by mimicking a learning process, data are handled in a
tractable way and approximately optimal solutions are
inferred. Quantum machine learning, an emergent line of
research that introduces quantum resources in learning
algorithms [1–5], brings this pragmatic approach to quan-
tum information processing, with a strong emphasis on
speedup [6–9]. Quantum mechanics, however, also alters
the limitations on what is physically possible in a classical
learning setup, thus potentially changing the structure of
learning algorithms at a fundamental level and opening a
door for increasing performance. In particular, handling
quantum data collectively typically allows us to outperform
local approaches in many information processing tasks
[10–15]. Investigating the potential advantage of using
quantum resources in learning algorithms crucially
demands to establish the ultimate limits achievable within
the framework of quantum machine learning. This Letter
tackles the question for general inductive supervised
learning scenarios.
In machine learning, we are given a sample of a

distribution called training instances [16,17]. The training
instances may have further fine structure, and we often
think of them as pairs consisting of an input object and a
matching output value or label: this is the scenario of
supervised machine learning where a classifying function is
induced from the training instances and then used to assign
labels to a number of unlabeled instances that we call test
instances. Not all forms of supervised learning are induc-
tive: transductive learning refers to a problem in which

labeled training instances are available, as well as unlabeled
instances [18]. The task is to propagate the labels to the
unlabeled ones; that is, we do not require inducing a
function that we can use infinitely many times. In this case,
the geometry of both the labeled and unlabeled instances
will influence the outcome. At variance with supervised
learning, in which the training occurs in a single step,
reinforcement learning algorithms are trained on an in-
stance basis with the possibility of changing the distribution
by the subsequent querying, and the quantum generaliza-
tion of the scenario has already been studied [19].
In this Letter we develop a framework for inductive

supervised quantum learning, that is, when training and test
instances are given in a quantum form, and we contrast its
structure with its classical analog. We first show for the
classical case that a natural independence requirement
among test instances, i.e., that the learning algorithm be
nonsignaling, induces the standard splitting of inductive
learning algorithms into a training phase and a test phase.
We then prove that the same splitting holds asymptotically
in the quantum case, despite having access to coherent
collective quantum operations. In other words, we show
that, in a fully quantum setting, the following three state-
ments are equivalent in terms of performance in the
asymptotic limit: (i) a supervised learning algorithm learns
a function which is applied to every test instance; (ii) a
supervised learning algorithm satisfies a nonsignaling
criterion; (iii) a supervised learning scenario splits into
separate training and test phases.
More formally, we derive a de Finetti theorem for

nonsignaling quantum channels and use it to prove that
the performance of any quantum learning algorithm, under
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the restriction of being nonsignaling, approaches that of a
protocol that first measures the training instances and then
infers labels on the test instances, in the limit of many test
instances. Our result reveals a natural analogy between
classical and quantum learning protocols, justifying a
similar treatment that we have been taken for granted.
Ultimately, the result provides a solid basis to generalize
key concepts in statistical learning theory, such as structural
risk minimization [20], to quantum scenarios.
Classical inductive learning.—Consider a supervised

learning problem characterized by an unknown joint prob-
ability distributionPXY , whereX and Y are random variables
that model the test data and the label associated with it,
respectively. We denote its respective marginals by PX and
PY . We are given a finite set of independent, identically
distributed unlabelled test instances fxigni¼1 and a set of
correctly labeled examples called the training set. The
training set is generated by sampling the distribution PXY ,
and we model it by the random variable A ¼
fðX1; Y1Þ;…; ðXm; YmÞg. We are then set to solve the task
of assigning a label yi to each test instance xi, based on the
information contained in the training set A. We define a
learning protocol that implements this task by a stochastic
map Pðy1;…; ynjA; x1;…; xnÞ.
The natural figure of merit for assessing the performance

of a learning protocol is the expected risk, defined in terms
of the conditional expected risk or average score per test
instance E½PjA� ¼ P

iE½syi;y0iPðy1∶njA; x1∶nÞ�, where y0i are
the true labels, accessible to a referee for evaluation
purposes, sj;k ¼ 1 − δj;k, and we have introduced the
short-hand notation x1∶n ¼ fx1;…; xng (likewise for y
and y0). The expectation is in terms of variables
x1∶n; y01∶n over the distribution PXY , i.e., for a generic
function g, E½gðx; y; y0Þ� ¼ P

x;y;y0gðx; y; y0ÞPXYðx; y0Þ. The
expected risk is then defined as the average conditional
expected risk over realizations a of the training set,
i.e., E½P� ¼ P

apAðaÞE½Pja�.
It is convenient to define the marginal maps of P:

PiðyijA; x1∶nÞ≡
X

y1∶i−1;yiþ1∶n

Pðy1∶njA; x1∶nÞ: ð1Þ

We call a learning protocol inductive if it satisfies the
condition

PiðyijA; x1∶i−1; xi; xiþ1∶nÞ
¼ PiðyijA; x01∶i−1; xi; x0iþ1∶nÞ;
∀ x01∶i−1; x

0
iþ1∶n; ð2Þ

for all i, namely, that PiðyijA; x1∶nÞ is actually independent
of all the X random variables but Xi, for all i. Equation (2)
can be interpreted as a nonsignaling condition among the
test instances as far as the learning protocol is concerned.
Note, however, that each marginal map Pi is still affected
by the training set A. This definition encompasses the
standard assumption of inductive learning, where a

classifier f is extracted from the training set, and only f
determines the label to be assigned to each test instance.
In contraposition, consider a transductive learning sce-

nario, where the topology of all of the unlabelled instances
can have an impact on the assignment of any of the labels.
The independence condition in Eq. (2) is thus violated;
hence, a transductive protocol is potentially signaling.
The following lemma pinpoints the feature of classical

inductive learning that is relevant for our goal. In the next
section we explore its extension to quantum settings.
Lemma 1: For every inductive learning protocol P that

assigns labels yi to test instances xi, there exists a set F of
classifying functions f∶X → Y and stochastic maps TðfjAÞ,
Qðyjx; fÞ ¼ δy;fðxÞ such that the inductive protocol ~P,

~Pðy1∶njA; x1∶nÞ ¼
X
f

�Yn
i¼1

Qðyijxi; fÞ
�
TðfjAÞ;

has expected risk E½PjA� ¼ E½ ~PjA� for all A.
The proof can be found in Ref. [21]. In words, this

lemma shows that every conceivable inductive learning
protocol can be regarded, with no effect on its performance,
as a two-phase operation: a training phase (represented by
the stochastic map T), where a classifier f is extracted from
the training set A, followed by a test phase (represented by
Q), where f is applied to each test instance xi and output
labels yi are assigned. The key ingredient behind its proof is
that the risk is a symmetric function of the joint inputs and
outputs, thus randomly permuting the inputs—and its
corresponding outputs—does not affect the expected risk.
Under this randomization, the resulting protocol P̄ remains
nonsignaling, and thus applying the marginal protocol
P̄1jaðyjxÞ ≔ P̄1ðyja; xÞ on each of the test instances will
yield the same expected risk as the original protocol P. It is
enlightening for our purpose to realize that all test instances
are independently acted upon by maps P̄1ja that use the
same sample of the training set a. As we show in the next
section, this is the element of the proof that fails to hold in
the quantum case.
Ona fundamental note, consider the converse ofLemma1:

any learning protocol that splits into a training phase and a
test phase satisfies the nonsignaling condition (2), so one can
arguably think of the nonsignaling condition as a definitory
trait of inductive learning. The advantage of this approach is
manyfold. On one hand, it allows one to focus on a much
simpler set of features which fully characterize the perfor-
mance of the protocol. In addition, the training phase can be
extended to provide further information relevant to assess, in
advance of the test phase, the expected performance of the
protocol. This is the case in, e.g., structural riskminimization,
where not only a function is chosen but also an estimator of
the expected risk itself is provided [20], and confidence
intervals are obtained.
Quantum learning.—Quantum information cannot be

cloned; hence, the argument supporting Lemma 1 breaks
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down. However, it is possible to approximately clone a
quantum state, and the quality of the clones, will depend on
how many copies must be produced, reaching an asymp-
totic limit in which each copy contains no more information
than that which can be obtained by a single quantum
measurement on the original system. This idea is reflected
in the seminal paper [25], which asserts that asymptotic
cloning is equivalent to state estimation succeeded by state
preparation. Intuitively, this principle hints at a plausible
inductive strategy in a learning scenario where both the
training set and all test instances are given as quantum
states: perform a quantum measurement M on the training
set A, distribute the measurement outcome across all test
instances B1∶n, and then use it to handle each test instance
independently. This approach has the property of being
nonsignaling by construction. We will show that any
symmetric nonsignaling protocol can be well approximated
by this strategy when the number of test instances is large.
In analogy to a classical learning problem, where an

unknown probability distribution pXY must be mimicked
by attaching appropriate labels to given random variables
X, one may consider the most general quantum learning
problem as the task of mimicking bipartite quantum states
ρXY by the action of a quantum channel on the marginal ρX.
The learning protocol can be thought of as a collective
quantum channel Q which takes a training register A and
the set of test instance registers X⊗n as inputs, and yields a
corresponding set of output registers Y⊗n (see Fig. 1 for an
illustrative description of the setup).
Definition 1.—A quantum learning protocol for a train-

ing set A and n quantum states ρXY∈X⊗Y is a multipartite
quantum channel Q∶A ⊗ X1∶n → Y1∶n. A nonsignaling
quantum learning protocol is a quantum channel
Q∶A⊗X1∶n→Y1∶n, such that trY1∶i−1Yiþ1∶n

½QðρAX1∶n
Þ� is

only a function of ρAX1∶î∶n
≔ trX1∶i−1X iþ1∶n

½ρAX1∶n
�, ∀i.

This approach serves as a good starting point for
generalizing several quantum learning problems, both
discriminative and generative. In particular, a quantum
state classification problem may be expressed as ρXY ¼P

ypyρ
ðyÞ
X ⊗ jyihyj, where register X contains the quantum

state, and Y holds a classical label corresponding to the
state in X. This naturally encompasses the programmable
quantum discriminator [26,27], but admits a much wider
class of setups. Another relevant approach is that of
quantum state tomography, i.e., where a classical label x

is taken as a predictor for certain quantum states ρðxÞY , thus

ρXY ¼ P
xpxjxihxj ⊗ ρðxÞY . The task of the protocol is to

learn from the training set each one of the quantum states
and then produce a similar copy for each X instance. More
generally, one could consider the task of generating
genuine bipartite quantum states ρXY starting from their
reduced states ρX [28].
Definition 2.—Given a risk observable S ∈ Y ⊗ Y0, the

expected risk of protocol Q is the expectation value of the

symmetrized risk observable S̄ ∈ ðY ⊗ Y0Þ1∶n on the output
of the channel Q, E½Q� ¼ tr½Q ⊗ idY0

1∶n
ðρA ⊗ ðρXY 0 Þ⊗nÞS̄�.

For every quantum protocol Q we can define the sym-

metrized protocol Q̄¼ð1=n!ÞPσ∈SnΠ
ðYÞ
σ

†∘Q∘ðidA⊗ΠðXÞ
σ Þ.

Q̄ is nonsignaling if Q is. In analogy with the classical case,
a nonsignaling quantum channel Q∶A ⊗ X⊗n → Y⊗n nat-
urally admits a notion of marginalization, thereby inducing
channels for a reduced number of registers, k ≤ n,Qk∶A ⊗
X⊗k → Y⊗k (Lemma 1 in Ref. [21]). Then, the expected risk
can be expressed in terms of Q̄1, E½Q� ¼ tr½Q̄1 ⊗ idY0

ðρA ⊗ ρXY 0 ÞSYY 0 �, or the conditional channel Q̄1jρA∶ρX ↦
Q̄1ðρA ⊗ ρXÞ.
It is clear that the line of reasoning so far is a simple

reformulation of the ideas involved in the classical argu-
ments. If one could implement the protocol Q̄1 on each of
the test instances then one could perform with an average
performance E½Q�. At this point, however, we encounter
the fundamental roadblock that motivates this work. The
map ρA ⊗ ρX1

⊗ � � �⊗ ρXn
↦ Q̄1jρAðρX1

Þ⊗ � � �⊗ Q̄1jρAðρXn
Þ

is nonlinear in ρA, so it does not reflect a physically
realizable transformation. This reflects the nonclonable
nature of quantum information [29,30]: it is the impos-
sibility of cloning the training set that prevents the
simultaneous application of the map Q̄1jρA on the n test

FIG. 1. Diagrammatic representation of a generic quantum
learning protocol Q (gray box), as per Definition 1, which is
approximated by ~Q, given in Eq. (3). Both setups take training and
test instances ρA and ρ⊗n

XY 0 as inputs. We distinguish two agents in
the diagrams: the performer of the learning protocol or “learner,”
placed above the dashed horizontal line, and the “referee,” placed
below. The learner sends the output registers Y1∶n of the learning
channel to the referee, who contrasts them with the registers Y 0

1∶n
and evaluates the average risk of the channel S̄ (see Definition 2).
This referee plays a role similar to the classical tester in the final
phase of quantum-enhanced reinforcement learning [19]. While
the most general approach (a collective quantum channel Q) in
principle acts globally on all its inputs, its approximation ~Q
comprises two separate phases: first (training phase) a measure-
ment M is performed on the training set ρA, and second (test
phase) the classical information g obtained from the measurement
is distributed among all test instances, and corresponding quantum
channels Φg are applied locally to each one of them.
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instances. Therefore, a generic quantum channel Q∶A ⊗
X1∶n → Y1∶n that distributes symmetrically the system A
across n identical parties X, can, at best, perform some sort
of approximate cloning, which then is acted upon inde-
pendently and symmetrically. Since, asymptotically, this
cloning operation becomes a measure-and-prepare process,
we can reduce it to a measurement on the training set,
and consider the preparation of the clones as part of the task
to be performed on each test instance. This argument can be
made formal as a de Finetti-type theorem for quantum
channels [31]. To conclude this section, we make our
statement rigorous.
Theorem 1: Let Q∶A ⊗ X1∶n → Y1∶n be a nonsignal-

ing quantum channel, and let S ∈ Y ⊗ Y0 be a local
operator. Then, there exists a POVM MðdgÞ on A and a
set of quantum channelsΦg∶X → Y such that the quantum

channel ~Q,

~Q ¼
Z

M̂ðdgÞ ⊗ Φ⊗n
g ; ð3Þ

satisfies jE½Q� − E½ ~Q�j ≤ κ=n1=6 þ ½Oð1=n1=3Þ�, where the
coefficient κ depends on the dimensions of the spaces A, X,
and Y.
The main ingredient behind this theorem is the quantum

de Finetti theorem for quantum states, which can be found
in Ref. [23]. We refer the reader to Ref. [21] for a detailed
derivation.
Theorem 1 shows that, for any local operator S, its

symmetrized expectation under the action of a nonsignaling
quantum channel Q can be approximated by a one-way
quantum channel ~Q of local operations and classical
communication (LOCC). This channel amounts to per-
forming a measurement MðdgÞ yielding outcome g over
the training set, and applying simultaneously Φg on each of
the test instances (see Fig. 1). The resulting performance of
both protocols, as measured by their expected risk, con-
verge to each other as n tends to infinity.
Discussion.—The main result reported in this Letter,

Theorem 1, is a natural consequence of the symmetry
implicit in the problem. Given the fact that the performance
on a multiple-instance inductive learning task is symmetric
under simultaneous exchange of the test-answer pairs, a
randomized permutation of the test instances will yield the
same average performance. Therefore, each protocol per-
forms equally well as its randomized permutation protocol.
We have used this symmetry and the fact that the quantum
information contained in the training set cannot be perfectly
distributed over an arbitrarily large number of parties, to
show that any such protocol must, effectively, be well
approximated by first performing a measurement over the
training set, and then distributing the outcome.
Previous works have already dwelt on this issue, that is,

the contrast between coherent quantum operations and
separate training and test phases for learning tasks, in
various specific scenarios. Examples are a quantum pattern

matching algorithm [33], quantum learning of unitary
operations [34], and quantum learning for state classifica-
tion [14,27]. It is worth stressing that, whereas the results so
far have been case specific, we approach the problem from
a very general standpoint, allowing us to discuss the broad
class of inductive quantum learning protocols within a
common framework.
The simplification of general quantum protocols to

schemes that use LOCC has several relevant implications.
As quantum information technologies advance, coherent
collectivemanipulation of quantum informationwill become
accessible on a practical scale. Nevertheless, the demon-
stration of a scalable, general-purpose, quantum computer is
still beyond the foreseeable future. For this reason, reducing
collective approaches to simpler, local ones is of utmost
importance.With the result reported in this Letter, the degree
of coherence required for implementing several inductive
quantum learning protocols is greatly reduced, from requir-
ing joint coherentmanipulation of both the training set and all
test instances, to only the training set.
Outlook.—Designing quantum algorithms to learn from

quantum information poses a serious challenge. Analytical
results are scarce, and numerical computations quickly
become intractable. A prominent example is quantum state
discrimination, which has no known closed-form solution
in general scenarios [35], and only highly symmetric cases
are exactly solvable [36]. Reducing a generic quantum
learning protocol to a single-instance one-way LOCC
protocol greatly simplifies the task. We expect that our
result will allow us to derive performance bounds for a
variety of relevant quantum learning tasks. Also, our
quantitative approximation bounds allow for single-copy
algorithms to be used as benchmarks for coherent multi-
instance ones.
Another benefit of this reduction is the ability to access,

without disturbance, the state of the learner in between the
training and test phases. This information is essential for
several machine learning tasks. For structural risk mini-
mization [20], one uses an estimate of the expected risk,
produced by evaluating the performance of a given clas-
sifier on the training set. In the quantum setup, this
approach is not directly applicable. As the training set
can only be accessed once, one can either extract informa-
tion to determine the best classifier, or to assess the
performance of one given classifier. However, both tasks
will generally be incompatible. Therefore, a “quantum
black box”—e.g., a fully quantum processor that takes
all the inputs (training and tests)—will, despite being the
most general approach, provide only the required answers.
It is unclear how one can adapt a generic quantum black
box to provide an assessment of its own performance. Our
result, nevertheless, opens the door to assessing the
performance of any classifier by suitably processing the
intermediate measurement outcome g. We expect the result
reported here will shed light on the potential and limitations
of learning from quantum sources, and ultimately serve as a
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starting ground for developing a fully quantum theory of
risk bounds in statistical learning.
A few comments on the degree of generality of our result

are in order. The convergence rate of our approximation is
potentially not tight, and we expect better bounds to be
achievable. For simplicity, the approach presented here uses
the operator form of Chebyshev inequality (Lemma 5 in
Ref. [21]), which ultimately hinders us from obtaining a
better bound. We expect a more detailed study will yield
better approximations. More importantly, our result can be
extended in various ways. A potentially very relevant
practical problem is to learn quantum operations rather
than states. This, however, can be easily addressed within
the Choi matrix formalism. A related result for learning
quantum unitary operations already shows the same split-
ting reported here [34]. Indeed, the formalism of quantum
combs [37] provides the theoretical framework for this
extension, but, essentially, the most general such process
will also be described by a suitable multipartite quantum
system ωAB1∶n

, where Awill now consist of input and output
ports, and the mapsΦg will be potential implementations of
the learned operations.
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