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Filling-enforced Dirac semimetals, or those required at specific fillings by the combination of crystalline
and time-reversal symmetries, have been proposed in numerous materials. However, Dirac points in these
materials are not generally robust against breaking or modifying time-reversal symmetry. We present a new
class of two-dimensional Dirac semimetal protected by the combination of crystal symmetries and a
special, antiferromagnetic time-reversal symmetry. Systems in this class of magnetic layer groups, while
having broken time-reversal symmetry, still respect the operation of time-reversal followed by a half-lattice
translation. In contrast to 2D time-reversal-symmetric Dirac semimetal phases, this magnetic Dirac phase is
capable of hosting just a single isolated Dirac point at the Fermi level, one that can be stabilized solely by
symmorphic crystal symmetries. We find that this Dirac point represents a new quantum critical point,
existing at the boundary between Chern insulating, antiferromagnetic topological crystalline insulating,
and trivial insulating phases, and we discuss its relationship with condensed matter fermion doubling
theorems. We present density functional theoretic calculations which demonstrate the presence of these 2D
magnetic Dirac points in FeSe monolayers and discuss the implications for engineering quantum phase
transitions in these materials.
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Since the discovery of graphene [1–4] and the recognition
of the unique role of its Dirac cones in transport [5–7] and
quantum criticality [8,9], there has been an ongoing effort to
reproduce aspects of Dirac semimetal physics in new
materials and to predict new variants. Through this search,
many new semimetallic phases have been predicted, char-
acterized, and, in some cases, observed in real materials,
including phases hosting 3D Dirac, Weyl, Double Dirac,
Spin-1 Weyl, or line nodes near the Fermi energy [10–28].
In these semimetallic phases, the nodal features are

stabilized by the combination of time-reversal and spatial
symmetries. In particular, for the phases protected by
nonsymmorphic symmetries, or those invariant under the
combination of a point group operation and a fractional
lattice translation, certain nodal features are always present
at space-group-specific fillings [29–31]. These semimetals,
known as “filling-enforced semimetals,” are prevented
from being insulators at these fillings by the combination
of Kramers theorem and nonsymmorphic symmetries and,
therefore, display bands inseparably bound together in
space-group-specific numbers. For example, for the simple
2D four-band models previously presented in Ref. [32],
glides and twofold screws forced bands to tangle together
in groups of four, such that at filling ν ¼ 2 the system
always displayed Weyl or Dirac points. Unlike the Dirac
points in band-inversion semimetals Na3Bi and Cd2As3
[16,17], filling-enforced nodal features can be found in all
time-reversal-symmetric materials [33].

In this Letter, we present the first examples of filling-
enforced Dirac semimetals in systems with magnetic
symmetries. We find that the combination of three-
dimensional layer group crystal symmetries and an anti-
ferromagnetic time-reversal symmetry protects a single
bulk Dirac point in a two-dimensional crystal, and we
present four-band tight-binding models demonstrating this
physics. Unlike in time-reversal-symmetric Dirac semimet-
als, a single magnetic Dirac point is permitted to exist as the
only feature at the Fermi energy. Furthermore, unlike the
antiferromagnetic Dirac points in Ref [34], which are
topological objects created through band-inversion transi-
tions, this 2D magnetic Dirac point is filling enforced: it
cannot be gapped without lowering the symmetry of the
particular magnetic layer group that protects it.
Further, we show that this magnetic Dirac point, like its

time-reversal-symmetric relative, represents the quantum
critical point between topologically distinct insulating
phases. For bulk perturbations that preserve the antiferro-
magnetic time-reversal operation, this magnetic Dirac
semimetal sits at the quantum phase boundary between a
trivial insulator, a Chern-trivial antiferromagnetic topologi-
cal crystalline insulator, and a nontrivial Chern insulator
with winding C ¼ �1.
We present density functional theoretic (DFT) calcula-

tions demonstrating the presence of these magnetic Dirac
points in FeSe monolayers, and discuss the implications for
engineering topological phase transitions in magnetic Dirac
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semimetals. Finally, we discuss the stability of this new
magnetic Dirac fermion in the context of disorder, inter-
actions, and condensed matter fermion doubling theorems.
In time-reversal-symmetric, filling-enforced Dirac semi-

metals, Dirac nodes at time-reversal-invariant momenta
(TRIMs) are protected by the algebraic relationship between
two spatial symmetries and time-reversal symmetry [31,32].
Specifically, at the k · p level, a fourfold point degeneracy
may be protected by two spatial operations A and B and an
antiunitary operation T̄ whose irreducible representations
satisfy the algebra

fA; Bg ¼ ½A; T̄ � ¼ ½B; T̄ � ¼ 0;

A2 ¼ �B2 ¼ −T̄ 2 ¼ þ1: ð1Þ
As magnetically ordered systems can still possess a time-

reversal-like antiunitary symmetry, they are also capable of
satisfying these relations and, in fact, may do so utilizing an
expanded set of crystal symmetry operations. Specifically,
when T̄ is plain time-reversal symmetry T , the above
relations may only be satisfied if at least one of A or B
is a twofold nonsymmorphic operation [31]. However, at
T̄ -invariant momenta in magnetically ordered systems, or
those for which T̄ ¼ fT jtg, where t is a fractional trans-
lation, commutation relations between T̄ and spatial
symmetries may be altered, allowing Eq. (1) to be satisfied
using only symmorphic symmetries.
To have a composite time-reversal-like symmetry T̄ with

a fractional lattice translation, a system must be composed
of sites that, while internally time-reversal-broken, have
time-reversed partners elsewhere in the unit cell. The
simplest example of this is a two-site antiferromagnet,
where the up spins on the A sites are the time-reverses of the
down spins on the B sites. To construct a model with this
symmetry, we first consider systems with four sublattices of
s orbitals, for a total of eight bands. Then, we turn on an
antiferromagnetic potential, assumed to be much stronger
than other hopping and energy terms, such that the system
splits into two effectively four-band systems, each with one
spin per sublattice. The subsystem above the plane can,
therefore, be described using two pairs of sublattices A, B.
Each pair individually respects T̄ , and the two pairs are
related to one another by additional spatial symmetries, as
shown in Fig. 1(a), for which t ¼ ð1

2
1
2
Þ. In this model, there

are also additional spatial symmetries inversion I and glide
reflection Mz. Representing the A or B degrees of freedom
by σ and the prime or nonprime degrees of freedom by τ,
the k · p model of the M point (kx ¼ ky ¼ π) reads

I ¼ iτy; Mz ¼ iτxσy; T̄ ¼ iτzσyK;

HM ¼ ½t0τx þ ðtSO2 þ tSO3 Þτzσz þ ðtSO3 þ tSO4 Þτzσx�kx
− ½ðtSO2 − tSO3 Þτzσz þ ðtSO3 − tSO4 Þτzσx�ky;

and can be generated by the tight-binding model

H ¼ t0 cos

�
kx
2

�
τx

þ ½tSO1 sinðkx − kyÞ þ tSO2 sinðkx þ kyÞ�τzσz
þ
�
tSO3 sin

�
kx − ky

2

�
þ tSO4 sin

�
kx þ ky

2

��
τzσx; ð2Þ

for which we have enumerated all symmetry-allowed terms
up to second-nearest-neighbor hopping.
If these two spatial symmetries were combined with

regular time-reversal-symmetry T , Dirac points atM and Y
would result, as shown in Ref. [32]. However, for an
antiferromagnet with T̄ symmetry, there is only a Dirac
point at M, as in the little group at Y, the translation
t anticommutes with both spatial operations and the algebra
in Eq. (1) is no longer satisfied.
To characterize this Dirac point as a quantum critical

point, we examine symmetry-lowering perturbations that
gap to insulating phases. In the k · p theory, five matrices
preserve T̄ while breaking one of the spatial symmetries: τy,
τxσx, τxσy, τxσz, and τz. Adding mass terms proportional to
these matrices results in either insulating orWeyl semimetal
phases, depending on the band ordering elsewhere in theBZ.
Unlike in time-reversal-symmetric Dirac semimetals, the
resulting gapped phases in these systems cannot be evalu-
ated by a Z2 quantum-spin-Hall (QSH) invariant.
Furthermore, as T̄ 2 ¼ −1 on only a line in the bulk BZ,
this system also cannot realize the inherently 3D antiferro-
magnetic topological insulating phase described by Mong,
Essin, and Moore in Ref. [35]. However, we find that this
does not exclude the presence of 2D topological magnetic
crystalline phases, i.e., those surface protected by T̄ .
Consider the (11), ð11̄Þ, ð1̄1Þ, and ð1̄ 1̄Þ edges, which

preserve T̄ . While one surface TRIM, Γ̄, has a Kramers
degeneracy from T̄ 2 ¼ −1, the other TRIM, Z̄, does not.

FIG. 1. (a) The lattice with I , fMzj0 1
2
g, and T̄ ¼ fT j 1

2
1
2
g with

spin alignment �ŷ. Red and green dots indicate sites above and
below the plane. (b) The band structure generated by the tight-
binding model with these symmetries [Eq. (2)]. Bands are
twofold-degenerate by the combination of I and T̄ . Pictured
are the top four bands of an eight-band model, which are split
from the bottom bands by a very large antiferromagnetic
interaction. The symmetries of this magnetic layer group neces-
sitate that groups of four bands meet in Dirac points at M for
fillings ν ∈ 4Zþ 2.
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Inducing a distortion potential proportional to the mass
term τy results in a bulk-insulating phase, and, for appro-
priately chosen terminations, edge states resembling QSH
edge modes appear in the gap and meet in a linearly
dispersive Kramers pair at Γ̄ [Fig. 3(c)]. The surface bands
at Z̄, however, are singly degenerate and free to move, as
T̄ 2 ¼ þ1 and Kramers theorem is not enforced. This
T̄ -preserving gapped system behaves like an array of
Su-Schrieffer-Heeger chains: τy effectively dimerizes the
A and B sublattices, leaving an edge state on unpaired
terminations. Changing the sign of τy causes dimers to
switch partners, converting edge states between paired and
unpaired (Fig. 2). The terms τxσx, τxσy, and τxσz also
correspond to dimerizing distortions, and produce the same
behavior as τy, though, when only weakly applied, they
result in Weyl nodes (or a nodal loop in the case of τxσy,
which preserves Mz) Fig. 3(a)]. Finally, the term τz, which
corresponds to a staggered on-site potential, is only capable
of gapping to a trivial insulator, though, when weakly
induced, it also produces an intermediate Weyl semimetal
phase [Fig. 3(b)].
We can separate crystalline insulating effects from the

overall bulk topology by examining the (10) ~T -breaking

edge in the bulk- ~T -preserving insulating phases above.
Though inducing some of the previous mass terms leads
this low-symmetry edge to display chiral modes [Fig. 3(d)],
these modes do not connect the bulk and valence mani-
folds, and are, therefore, nontopological. This indicates that
the antiferromagnetic crystalline insulating phases in Fig. 2
are Chern trivial (C ¼ 0).
The magnetic Dirac point can also be gapped by

breaking T̄ . Applying a mass term σy at M breaks T̄
while preserving both spatial symmetries and results in the
development of a single topological chiral mode on each
edge [Fig. 3(c)], implying a Chern-insulating bulk with
winding jCj ¼ 1.
We also find that turning on the same antiferromagnetic

potential in an otherwise symmorphic system also results
in the enforcement of related magnetic Dirac points. In
Fig. 4(a), we show a lattice generated only with antiferro-
magnetic time-reversal ~T and symmorphic rotationsC2x and
C2y. AtM, this combination of symmetries still satisfies the
algebra in Eq. (1), and bands there consequently form
similar magnetic Dirac points composed of two nondegen-
erate cones [Fig. 4(b)]. Tight-binding models for this
symmorphic system are detailed in the Supplemental
Material [36].
For both magnetic Dirac systems, electron fillings ν ∈

4Zþ 2 are required for the Fermi energy to lie at the Dirac

FIG. 2. For the tight-binding model in Eq. (2), introducing an
asymmetry in the hopping between A, A0 and B, B0 sites may
result in edge states on T̄ -preserving surfaces. (c), (d) The (11)
edge of a ribbon with different signs of the Mz-breaking term τy
in the k · p at M. The edge in (c), represented by red lines in (a)
and (b) hosts surface states, shown in the inset band structure. The
edge in (d), represented by black lines in (a) and (b), is fully
gapped. Flipping the sign of τy is equivalent to applying C2z

rotation, which exchanges the two crystalline phases.

FIG. 3. (a) Perturbations corresponding to τxσx (along with
τxσy and τxσz) result in nodal phases (left) or bulk gapped phases
(right), depending on perturbation strength. These cases are
associated with dimerizations of the lattice, analogous to those
in Fig. 2, and may produce edge states in the same fashion (b). τz
represents a staggered on-site potential and leads to a pair of Weyl
points for small magnitudes (left), two pairs as the magnitude
increases (center), and, ultimately, an insulating phase once the
Weyl points annihilate (right), but never produces edge states,
independent of termination. (c) The chiral edge states resulting
from breaking T̄ while preserving the spatial symmetries; left-
and right-moving states sit on opposite edges and connect the
valence and bulk manifolds, consistent with bulk topology
jCj ¼ 1. (d) Band structure of the (10) ~T -breaking edge of the
T̄ -bulk-preserving perturbed system in Fig. 2. Each edge
hosts a single, directional, trivial edge state, indicating that the
T̄ -preserving bulk-insulating phases are Chern-trivial C ¼ 0.

PRL 118, 186401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
5 MAY 2017

186401-3



point. In the first model, the presence of multiple
nonsymmorphic symmetries disallows fillings of ν ¼ 2,
6, as they would imply atoms with fractional numbers of
electrons. However, derived phases for which one of the
nonsymmorphic symmetries is broken are still achievable.
Appropriately chosen adatoms or substrates may be able to
dope the system while only weakly perturbing it, main-
taining an approximate Dirac cone.
In the magnetic layer group of the symmorphic model in

Fig. 4, it is possible for pairs of sublattices to coincide, such
that only two sites are necessary. In such a two-site system,
the Dirac point would be allowed to sit at the Fermi energy
without the distribution of electrons violating crystal
symmetries. However, constructing a two-site model with
these symmetries requires a more complicated pattern of
magnetic ordering.
This physics may be realized in the antiferromagnetic

phase of iron-based superconductors. The iron pnictides—
and FeSe—comprise layers of iron arsenide or iron selenide
in the antilitharge structure [39], and have already been
shown to have nontrivial topological properties [40].
Recently, monolayers of FeSe have been synthesized and
investigated [41,42]. In the iron superconductors, including
bulk FeSe, the antiferromagnetic order typically manifests
as a striped pattern [Fig. 5(a)] [43–47] with symmetries
captured in the tSO1 ¼ tSO2 , tSO3 ¼ tSO4 limit of Eq. (2). Using
a DFT calculation [36], we obtain the band structure of
FeSe [Fig. 5(b)], which exhibits clear fourfold-degenerate
Dirac fermions at M. For single-layer FeSe, the filling
prevents the Fermi energy from sitting at any of the Dirac
points. However, by stacking iron pnictide monolayers
with intercalated species, it may be possible to engineer a
few-layer system with the correct filling.
We have described a class of magnetic Dirac semimetals

protected bymodifying time-reversal symmetry to include a
fractional translation. This translation results in commuta-
tion relations with the spatial symmetries different from

those in ordinary time-reversal-symmetric crystals, allowing
for Fermi surfaces consisting of single Dirac points, and
removing the requirement of nonsymmorphic symmetries.
Both topologically nontrivialmagnetic crystalline insulating
and Chern insulating phases are easily accessible from this
magnetic semimetallic phase by breaking symmetries. The
dimerizations required to gap into the T̄ -preserving phases
can, in general, be achieved by applying 11-direction-strain,
and provide a route towards strain-engineering broken-time-
reversal quantum phase transitions. We find that FeSe
monolayers with striped magnetic ordering display these
magnetic Dirac fermions.
The role of disorder and interactions in magnetic Dirac

semimetals is an open question. A given disorder ensemble
may preserve magnetic group symmetries on the average
while, nevertheless, representing a quantum critical point
nonperturbatively related to the single-particle magnetic
Dirac point, or the system may Anderson localize.
However, if the mean-field theory still obeys the group
symmetries, Eq. (1) remains satisfied and a gap cannot
form. In strongly correlated time-reversal-symmetric fill-
ing-enforced semimetals SrIrO3 and CuBi2O4, there have
been hints of Mott instability related to emergent spin order
[28,48,49]. As magnetic Dirac semimetals are already
stable under spin ordering, their gaplessness may, therefore,
be more robust against interactions.
Finally, we note that these magnetic semimetals circum-

vent the Dirac fermion doubling theorem for time-reversal-
symmetric Dirac semimetals. In those systems, unpaired
Dirac points are prevented from being stabilized in 2D bulk
crystals by the presence of additional Dirac or Weyl
features at the Fermi energy. This prevents the nearby
QSH and trivial insulating phases from being related to
each other by a crystal symmetry operation [32]. Though
the T̄ -preserving gapped phases in our systems seem to

FIG. 4. (a) The lattice with C2x, C2y, and T̄ ¼ fT j 1
2
1
2
g with

spin alignment �ŷ. The red and green sites sit above and below
the plane, respectively; the gray open-circle site lies in the plane.
The symmetries of this magnetic layer group require that bands,
shown in (b), while singly degenerate, still group together in
multiples of 4 and meet at M in Dirac points with nondegenerate
cones. Systems in this magnetic layer group are, therefore, filling-
enforced magnetic Dirac semimetals at fillings ν ∈ 4Zþ 2.
These bands were obtained from a tight-binding model detailed
in the Supplemental Material [36].

FIG. 5. (a) The structure of an FeSe monolayer. The iron atoms
(dark gray) form a planar square lattice, while the selenium atoms
sit above and below the plane, so that the iron atoms are
tetrahedrally coordinated. Magnetic moments are shown for
the striped ordering phase, and are represented by the colored
arrows. (b) The band structure of the striped phase of FeSe.
Below the Fermi energy, the valence bands form a Dirac point at
M that splits weakly along theM − X line. The splitting is due to
spin-orbit interaction and its weakness is a consequence of the
bands comprising primarily iron d orbitals.
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violate this doubling theorem, they are actually unrelated.
The gapped phases in these magnetic Dirac systems are
topological crystalline phases preserved by time-reversal
and a surface-specific spatial operation, here, the combined
operation of time-reversal and a diagonal half-lattice trans-
lation. The two antiferromagnetic topological crystalline
insulating phases in Fig. 2 are Chern-trivial and related by a
C2z operation, such that only crystalline invariants are
exchanged under spatial operations and the overall bulk
topology remains unaffected. In fact, one may, instead,
consider the magnetic Dirac points presented here as the
symmetry-pinned combinations of two, twofold-degenerate
quantum Hall transitions. In this sense, these Dirac points
also successfully avoid the two-dimensional parity
anomaly for twofold-degenerate fermions addressed by
Haldane in Ref. [50].
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Note added.—Recently, a band-inversion magnetic Dirac
semimetal was presented in Ref. [51]
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