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We show how the topological number of a static Hamiltonian can be measured from a dynamical
quench process. We focus on a two-band Chern insulator in two dimension, for instance, the Haldane
model, whose dynamical process can be described by a mapping from the ½kx; ky; t� space to the Bloch
sphere, characterized by the Hopf invariant. Such a mapping has been constructed experimentally by
measurements in cold atom systems. We show that, taking any two constant vectors on the Bloch sphere,
their inverse images of this mapping are two trajectories in the ½kx; ky; t� space, and the linking number of
these two trajectories exactly equals the Chern number of the static Hamiltonian. Applying this result to a
recent experiment from the Hamburg group, we show that the linking number of the trajectories of the
phase vortices determines the phase boundary of the static Hamiltonian.
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Recently, cold atom experiments have realized a number
of topological models including the Hofstadter model
[1–4], the Haldane (and the Haldane-type) model [5–7],
the Su-Schrieffer-Heeger model [8,9], and its Thouless
charge pumping [10–13]. One major advantage of studying
topological models in the context of cold atom systems, in
comparison with its condensed matter counterpart, is that
the experimental investigation of the dynamic processes
can be more easily accessible. For example, considering
noninteracting fermions initially in a topologically trivial
insulator state of the initial Hamiltonian Hi, we shall focus
on a sudden quench to a final Hamiltonian Hf, whose
ground state is a topologically nontrivial insulator (e.g., a
Chern insulator) at the same filling, and the question is
whether the change of the topological number can be
revealed from the dynamical process after the quench. In
fact, such a quench experiment has been performed
recently in a Haldane-type model with cold atoms by
the Hamburg group [14]. Using a momentum resolved
quantum state tomography method [15–17], they can map
out the evolution of the wave function as time evolves after
the quench.
At equilibrium, for a Chern insulator, it is known that the

bulk Chern number, the number of edge states, and the
quantization value of the Hall conductance are equal, which
is termed “the bulk-edge correspondence.” However, for
the nonequilibrium process after the quench there is no
such clear relation between them. First of all, in the absence
of dissipation, the time evolution after the quench is unitary,
so the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [18]. Nevertheless, the edge state gradually
emerges [18,19]. Second, without dephasing, the Hall
response will not be well quantized for either a slow or
a sudden quench [20,21]. It is also found that the Hall

conductance can become finite even after quenching to a
topologically trivial final Hamiltonian [22]. Therefore, it is
desirable to know whether there is a way to rigorously map
out the topology of the band structure of Hf through the
quench dynamics.
In this Letter we present a scheme to extract a quantized

value from the dynamical process after the quench, and this
quantized value is exactly the same as the topological
Chern number of the final Hamiltonian Hf. This scheme
can be directly applied to analyze the recent experimental
data from the Hamburg group (Ref. [14]), as well as
other similar systems (such as the ETH [6] and the
USTC experiments [7]), to determine the topological phase
diagram.
Summary of the scheme.—Before proceeding to the

details, let us briefly summarize our scheme as follows.
Let us consider a general two-band tight-binding model

in two dimensions, and at each momentum, the
Hamiltonian can be written as

HðkÞ ¼ 1

2
hðkÞ · σ; ð1Þ

where σ ¼ ðσx; σy; σzÞ is a vector of the Pauli matrices.
Thus, the eigenenergies of the Hamiltonian are �jhðkÞj=2,
corresponding to the upper and the lower bands, respec-
tively. We further consider at each k that jhðkÞj is always
nonzero, and the system is an insulator at half filling. The
two-component wave function is denoted by ζðkÞ.
Here we consider the quench process that corresponds to

a sudden change of hðkÞ from a topologically trivial hiðkÞ
to hfðkÞ. The initial wave function ζiðkÞ is taken as the
lower-band eigenstate of the initial Hamiltonian. After
the quench, the wave function will involve according to
the final Hamiltonian as
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ζðk; tÞ ¼ exp

�
−
i
2
hfðkÞ · σt

�
ζiðkÞ; ð2Þ

and by introducing a Bloch vector,

n ¼ ζ†ðk; tÞσζðk; tÞ; ð3Þ

Eqs. (2) and (3) together define a mapping f from ½kx; ky; t�
to the Bloch sphere n.
Scheme.—Taking any two constant vectors n1 and n2 on

the Bloch sphere, their inverse images f−1ðn1Þ and f−1ðn2Þ
are two trajectories in the ½kx; ky; t� space. The linking
number of these two trajectories within the first Brillouin
zone equals the Chern number of the ground state for the
final Hamiltonian at the same filling [23].
Example to illustrate the scheme.—As a concrete exam-

ple to illustrate our proposal, we consider the Haldane
model in a honeycomb lattice [see Fig. 1(a)]. The particle
annihilation operators at two sublattices of the honeycomb
lattices are denoted by âri and b̂ri . The tight-binding model
is written as

Ĥ ¼ −J0
X
ri;j

ðâ†ri b̂riþdj þ H:c:Þ þM
X
ri

ðâ†ri âri − b̂†ri b̂riÞ

þ J1
X
ri;j

ðe−iϕâ†ri âriþaj þ eiϕb̂†ri b̂riþaj þ H:c:Þ; ð4Þ

where d1;2 ¼ ð� ffiffiffi
3

p
=2; 1=2Þa0, d3 ¼ ð0;−1Þa0 are the

three vectors connecting the nearest-neighboring sites,
and a1;2 ¼ ð− ffiffiffi

3
p

=2;�3=2Þa0 and a3 ¼ ð ffiffiffi
3

p
; 0Þa0 are

the three vectors connecting the next-nearest-neighboring
sites, with a0 being the lattice spacing. The next-nearest
hopping has a phase factor that is opposite between A and B
sublattices. In the momentum space, Eq. (4) becomes

Ĥ ¼
X
k

ðâ†k; b̂†kÞHðkÞ
�
âk
b̂k

�
; ð5Þ

and aside from a term proportional to the identity matrix,
HðkÞ takes the same form as Eq. (1), with

hxðkÞ ¼ −2J0
X
i

cosðk · diÞ; ð6Þ

hyðkÞ ¼ −2J0
X
i

sinðk · diÞ; ð7Þ

hzðkÞ ¼ 2M þ 4J1 sinϕ
X
i

sinðk · aiÞ: ð8Þ

The phase diagram of this Haldane model at half filling
(with the lower band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have Chern numbers
þ1 and −1, respectively. Here, we consider a sudden
change of M and ϕ starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Figs. 2(a)

and 2(b), we consider the inverse image of two vectors n
and −n on the equator. One can see that if Hf is in the
topologically trivial regime, as shown in Fig. 2(a), f−1ðnÞ
sits inside the trajectory of f−1ð−nÞ, and the linking
number is zero; while if Hf is in the topologically non-
trivial regime, as shown in Fig. 2(b), these two trajectories
link 3 times. This is because, to avoid the discontinuity
of the trajectory across the boundary of the first Brillouin
zone, our plot spans the momentum regime including
three replicas of the first Brillouin zone. Within the first
Brillouin zone, the linking number is unity that equals
to the Chern number of Hf. Similarly, we consider the
inverse images of the north and the south pole. As shown in
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FIG. 1. (a) Schematic of hopping in the Haldane model in a
honeycomb lattice. (b) Phase diagram of the Haldane model. The
arrow indicates a quench from a topologically trivial regime to a
topologically nontrivial regime.

FIG. 2. (a),(b) Inverse images of two vectors n and −n on the
equator, when the Hamiltonian is quenched from hiðkÞ with
M ¼ −∞ (topologically trivial regime) to hfðkÞ with ϕ ¼ 0.1
and M ¼ 1 (topologically trivial regime) (a), and to hfðkÞ with
ϕ ¼ π=2 and M ¼ 0 (topologically nontrivial regime) (b), re-
spectively. (c),(d) Inverse images of the north and the south poles,
when the Hamiltonian is quenched from hiðkÞ withM ¼ −1 and
ϕ ¼ π=2 to hfðkÞwithM ¼ 0.33

ffiffiffi
3

p
and ϕ ¼ π=2 (topologically

trivial regime) (c), and to hfðkÞ with M ¼ 0.27
ffiffiffi
3

p
and ϕ ¼ π=2

(topologically nontrivial regime) (d). For all plots we have taken
J0 ¼ 1 and J1 ¼ 0.1.
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Figs. 2(c) and 2(d), the inverse image of the north pole is a
straight line in the K and K0 points. The inverse image of
the south pole does not enclose the K or K0 point ifHf is in
the topologically trivial regime [Fig. 2(c)], giving rise to
linking number zero, and it encloses three equivalent K or
K0 points when Hf is topologically nontrivial [Fig. 2(d)],
giving rise to linking number unity within the first
Brillouin zone.
Here we should include a remark about how to determine

the sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining it as the
direction of J with [24]

J μ ¼ 1

8π
ϵμνλn · ð∂νn × ∂λnÞ; ð9Þ

with the indices taking kx, ky, and t. Thus, when two
trajectories link and one trajectory crosses through a
surface enclosed by another trajectory, if the direction of
the trajectory is the same as the normal direction of the
surface (determined by the right-hand rule), we denote the
linking number asþ1 [25], otherwise we denote the linking
number as −1. Hence, both cases shown in Figs. 2(b)
and 2(d) have a linking number þ1, consistent with the
Chern number of Hf in the phase diagram. Fig. 1(b). We
have also checked that, if the Chern number of the Hf

changes sign, the linking number defined in this way also
changes sign.
Mathematical proof of the results.—The general proof

follows the following three steps.
Step 1: From Eqs. (2) and (3), one can see that at each k,

nðkÞ at t ¼ 0 is always identical to nðkÞ at t ¼ 2π=jhfðkÞj.
Hence, they can be identified as one point. The mapping f
from ½kx; ky; t� to the Bloch sphere is thus a mapping from
T3 (three-dimensional torus) to S2, which is classified as Z
for the situation considered here [26]. The topological
number is the Hopf invariant, and, mathematically, it also
equals the linking number of two inverse images f−1 [25].
This number is invariant under continuous deformation of
the mapping f.
Step 2: Now we decompose the mapping f as f1∘f2, as

shown in Fig. 3. f1 maps ½kx; ky� to hf with the definition of
hfðkÞ [e.g., Eqs. (6)–(8)], which is classified by the Chern
number C. f2 maps ½hf; t� to n with Eqs. (2) and (3).
If f1 is a topologically trivial map, it can be continuously

deformed into a mapping that all k points are mapped to the
same vector. Thus, ½hf; t� forms an S1. Then f2 becomes a
mapping from S1 to S2 that is always topologically trivial.
Thus, f is a topologically trivial map.
In this step we focus on the case that f1 is a topologically

nontrivial map with nonzero Chern number C. We will
show that one can construct a class of mapping f such that
the linking number of two inverse images of f−1 equals C.
For this construction, (i) we consider the initial wave

function ζiðkÞ ¼ ζ0 ¼ ð1
0
Þ for all momenta, which corre-

sponds to choosing hiðkÞ ¼ ð0; 0;−1Þ or M ¼ −∞ in the
example of the Haldane model. (ii) We assume jhfðkÞj ¼ 1

for all momenta; thus, hf itself is a Bloch sphere S2.
Furthermore, since all ½hf; t ¼ 0� map to the same point of
the north pole, they can be glued to one point, and the same
for all ½hf; t ¼ 2π�. Thus, the compact ½hf; t� forms a S3.
(iii) We divide the first Brillouin zone into jCj patches and
we construct a mapping f1 such that the boundary of each
patch is mapped to the north pole of the Bloch sphere
for hf, and, therefore, different patches can be smoothly
connected. Moreover, because Hf has a Chern number C,
f1 fully covers the Bloch sphere jCj times, and each patch
covers the entire Bloch sphere once.
We can stretch each patch into a compactified two-

dimensional plane and parametrize this plane with polar
coordinate r and φ. For the convenience of computing the
Hopf invariant, we can construct hf as

hf ¼ ( cosφ sinðgðrÞÞ; sinφ sinðgðrÞÞ; cosðgðrÞÞ); ð10Þ

where φ changes between zero and 2π, and r changes
between zero and infinity, with gð0Þ ¼ π and gð∞Þ ¼ 0.
Writing J μ ¼ ϵμνλ∂νBλ, the Hopf invariant is given

by [24]

H ¼
Z

rdrdφdtBμJ μ: ð11Þ

With Eqs. (2), (3), and (9) and this parametrization, it is
straightforward to show that

J 0 ¼ 1

2πr
sin2

�
t
2

�
sinð2gÞg0; ð12Þ

J i ¼ −
1

4π
sin g

�
ri
r2

sin t sin g − 2ϵij
rj
r
sin2

�
t
2

�
g0
�
; ð13Þ

with i being the two directions in the two-dimensional
plane. Equations (12) and (13) further give

B0 ¼ −
1

2π
sin2

�
t
2

�
cos g; ð14Þ

FIG. 3. Schematic of the mapping f1 from ½kx; ky; t� (½kx; ky�
forms a torus) to ½h; t�, and mapping f2 from ½h; t� to n on a
Bloch sphere.
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Bi ¼ −
ϵijrj
2πr2

sin2
�
t
2

�
sin2 g: ð15Þ

Substituting Eqs. (12)–(15) into Eq. (11), one can obtain
H ¼ 1 for this case [30]. Thus, f2 is a topologically
nontrivial Hopf map. It is proved mathematically that
the Hopf invariant equals the linking number of the inverse
images in S3 of two different n’s on S2 [25]; thus, the
linking number of f−12 equals unity. Furthermore, since
there is a one-to-one correspondence between each patch in
the first Brillouin zone and hf, for the mapping constructed
in this way, the linking number of the inverse mapping f−1

equals C. Moreover, if the Chern number changes the
sign, it corresponds to change fð0Þ ¼ 0 and fð∞Þ ¼ π in
the parametrization, and one obtains H ¼ −1 for f2.
Consequently, the linking number also changes sign.
Step 3: The three conditions used in step 2 can be

released by continuously deforming the mapping, which
does not change the linking number. For (i), as long as the
system is gapped, i.e., jhfj is finite everywhere, the length
of jhfj can always be continuously adjusted to jhfj ¼ 1.
For (ii), as long as the initial wave function is in the
same topologically nontrivial regime, it can be obtained
by a continuous transformation of a uniform state as
ζiðkÞ ¼ UðkÞζ0, where UðkÞ is a smooth function of k
and smoothly connects to the identity matrix. Hence, it does
not change the linking number. Finally, continuously
deforming f1 also does not change the linking number,
which releases condition (iii). Therefore, we prove our
results for a general situation.
Application to cold atom experiments.—Finally, we

discuss applying our theory to recent cold atom experi-
ments, such as the one from the Hamburg group [14]. The
initial state is prepared with all n pointing around the north
pole, and they quench the system by turning on a periodic
shaking which can induce the gauge field and topological
Haldane model [6,14,15,31–35]. Using the method of
momentum resolved quantum state tomography [15], they
are able to measure the wave function in the pseudospin
bases as

ζðkÞ ¼
�

sinðθk=2Þ
− cosðθk=2Þeiφk

�
.

Two types vortices of the phase φk are found in the
momentum space. The first type of phase vortices are
naturally located in the K and Γ points and their locations
do not evolve with time, where n always points to the north
pole; while the second type of phase vortices locate at
certain momenta, at which n rotates to the south pole. The
second type of vortices can be pair-wisely created and
annihilated in the momentum space, tracing a trajectory in
the ½kx; ky; t� space.

In Ref. [14], they use the appearance of the second type
of phase vortex as criterion to determine what they call
a “dynamical phase transition.” And they find that the
phase diagram for the dynamical phase transition is much
wider than the expected topological regime for the static
Hamiltonian. With our results, the topological regime of
the static Hamiltonian is determined by whether the
trajectories of the second type of vortices wind around
the trajectories of the first type of vortices, because these
two trajectories are the inverse images of the south and the
north poles, respectively. Thus, the linking number of these
trajectories, as we shown in Figs. 2(c) and 2(d), determines
the Chern number. For the Haldane model, it can be shown
that, if the initial state uniformly points to the north pole for
all momenta, once the second type of vortices appear, their
trajectories always wind around the K or K0 points [36].
However, if the initial state spreads a finite regime around
the north pole, as in the case of the real experiment, there
exists a certain regime where the second type of vortices
appear but their trajectory encloses neither K or K0 [36].
In these regimes, the final Hamiltonians are still topological
trivial ones.
In summary, our result establishes a unique relation

between quench dynamics and equilibrium property
regarding the topological band structure. Our result can
be applied to the Haldane model realized by the ETH [6]
and the Hamburg group [14], with measurements of the
momentum resolved quantum state tomography measure-
ment, and can also be applied to the Haldane-like model
realized by the USTC group [7], where the real spin is used
instead of the pseudospin, and the momentum and spin
resolved measurement will be sufficient. On the theory
side, future generalizations include quench from the topo-
logical nontrivial initial state, and quench in other classes of
topological model, such as the time-reversal invariant Z2

topological insulator.
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