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An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the
attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRGmodel yields
the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and
b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various
thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model.
Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a
qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in
particular in the so-called crossover region T ∼ 140–190 MeV. For many observables this behavior
resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts
nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision
experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of
hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and
heavy-ion data may lead to misconceptions and misleading conclusions.

DOI: 10.1103/PhysRevLett.118.182301

The thermodynamic properties of strongly interacting
matter at zero chemical potential and finite temperature
have been computed using Monte Carlo simulations in
lattice QCD [1,2]. A crossover is observed [3] in the
temperature range of 140–190MeV. At lower temperatures,
T ∼ 100–150 MeV, QCD exhibits features similar to sim-
ple ideal hadron resonance gas (IHRG) which successfully
reproduces many lattice observables [4–7]. In the crossover
region, however, the agreement between IHRG and lattice
QCD deteriorates. The breakdown of the IHRG model
especially concerns the higher order fluctuations and
correlations of conserved charges [8], resulting in state-
ments that hadrons melt quickly and are basically absent at
T > 160 MeV [9]. In this Letter, it is shown that these
conclusions are inconclusive. van der Waals (VDW)
interactions between baryons play a crucial role for the
thermodynamics of hadron fluid at sufficiently high tem-
peratures. As a result, the qualitative features of the
thermodynamics of interacting HRG appear to be close
to lattice results in the crossover region. The results also
have important phenomenological relevance for heavy-ion
collision experiments where measurements of conserved
charges fluctuations have been suggested as probes for
chemical freeze-out [10,11] or the QCD critical point [12].
The IHRG model does not capture the VDW nature of

nucleon-nucleon interaction and, thus, fails to describe the
properties of nuclear matter at small temperatures and large

baryon densities. This shortcoming of this common HRG
model is usually considered to be of minor significance
when applied to ultrarelativistic heavy-ion collisions or to
lattice data, although recently possible relevance for fluc-
tuations was pointed out [13]. The repulsive part of VDW
interactions had often been included into HRG by means of
an excluded-volume (EV) procedure [14], usually assum-
ing identical EV interactions between all hadron pairs [15].
The grand canonical ensemble formulation of the full VDW
equation with both attractive and repulsive interactions, and
including quantum statistics, was developed in Refs. [16–
18] for single-component systems. In these works, the basic
features of nuclear matter have been successfully described
by the VDW equation with Fermi statistics for nucleons.
The VDW parameters a and b were uniquely fixed by
reproducing the saturation density n0 ¼ 0.16 fm−3 and
binding energy E=A ¼ −16 MeV of the ground state of
nuclear matter. For nucleons the values a ¼ 329 MeV fm3

and b ¼ 3.42 fm3 were obtained in Ref. [18], and also later
in Ref. [19]. The resulting model predicts a liquid-
gas first-order phase transition in symmetric nuclear
matter with a critical point located at Tc ≃ 19.7 MeV
and μc ≃ 908 MeV (nc ≃ 0.07 fm3 ¼ 0.45n0).
In the following a minimal extension of IHRG model,

which includes the VDW interactions between (anti)bary-
ons, is described. We refer to this model as VDW-HRG and
it is based on the following assumptions:
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(1) VDW interactions are assumed to exist between all
pairs of baryons and between all pairs of antibaryons. The
VDW parameters a and b for all (anti)baryons are assumed
to be equal to those of nucleons, as obtained from the fit to
the ground state of nuclear matter.
(2) The baryon-antibaryon, meson-meson, and meson-

(anti)baryon VDW interactions are neglected.
In a sense the present VDW-HRG model is a “minimal-

interaction” extension of the IHRG model, which describes
the basic properties of nuclear matter. Whether significant
VDW interactions exist between hadron pairs other than
(anti)baryons is not clearly established. For instance, it has
been argued that short-range interactions between baryons
and antibaryons may be dominated by annihilation proc-
esses and not by repulsion [20], and this is our motivation
to exclude VDW terms for them in this study. The presence
of significant mesonic eigenvolumes, comparable to those
of baryons, leads to significant suppression of thermody-
namic functions in the crossover region at μB ¼ 0, which is
at odds with lattice data (see Refs. [20,21]). The attractive
interactions involving mesons, on the other hand, normally
lead to resonance formation [22], which are already
included in HRG by construction. For these reasons,
we neglect the meson-related VDW interactions in this
study. The VDW-HRG consists of three subsystems:
Noninteracting mesons, VDW baryons, and VDW anti-
baryons. The total pressure reads

pðT; μÞ ¼ PMðT; μÞ þ PBðT; μÞ þ PB̄ðT; μÞ; ð1Þ
with

PMðT; μÞ ¼
X

j∈M
pid
j ðT; μjÞ; ð2Þ

PBðT; μÞ ¼
X

j∈B
pid
j ðT; μB�j Þ − an2B; ð3Þ

PB̄ðT; μÞ ¼
X

j∈B̄

pid
j ðT; μB̄�j Þ − an2B̄; ð4Þ

where M stands for mesons, B for baryons, and B̄ for
antibaryons, pid

j is the Fermi or Bose ideal gas pressure,
μ ¼ ðμB; μS; μQÞ are the chemical potentials which regulate
the average values of net baryon number B, strangeness S,

electric charge Q, μBðB̄Þ�j ¼μj−bPBðB̄Þ−abn2BðB̄Þþ2anBðB̄Þ,
and nB and nB̄ are, respectively, total densities of baryons
and antibaryons.
The calculation of mesonic pressure PMðT; μÞ is straight-

forward. The shifted chemical potentials μBðB̄Þ�j of (anti)
baryons depend explicitly on (anti)baryon pressure PBðB̄Þ
and on total (anti)baryon density nBðB̄Þ. By taking the
derivatives of PBðB̄Þ with respect to the baryochemical
potential one obtains additional equations for nBðB̄ÞðT; μÞ,

nBðB̄Þ ¼ ð1 − bnBðB̄ÞÞ
X

j∈BðB̄Þ
nidj ðT; μBðB̄Þ�j Þ: ð5Þ

At given T and μ, Eqs. (2)–(5) are solved numerically,
giving PBðB̄ÞðT; μÞ and nBðB̄ÞðT; μÞ. Entropy density is
calculated as s ¼ ð∂p=∂TÞμ, and energy density is
obtained from Gibbs relation.
The present calculations include all established strange

and nonstrange hadrons which are listed in the Particle Data
Tables [23], with the exception of σ and κ mesons [24,25].
The finite widths of the resonances are included by means
of an additional mass integration over their Breit-Wigner
shapes. We employ the HRG code used in Refs. [26,27],
modified to include the VDW interactions between (anti)
baryons. The temperature dependence of the scaled pres-
sure p=T4, energy density ε=T4, and the speed of sound
squared c2s ¼ dp=dε calculated at μ ¼ 0 within IHRG and
VDW-HRGmodels is compared to the lattice data in Fig. 1.
To clarify the role of attractive and repulsive interactions,
we also show the calculations, denoted as EV-HRG, where
the VDW attraction was “switched off,” i.e., a ¼ 0. Since
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FIG. 1. The temperature dependence of (a) scaled pressure and energy density, and of (b) the square of the speed of sound at zero
chemical potential, as calculated within IHRG (dashed black lines), EV-HRG with b ¼ 3.42 fm3 (dash-dotted red lines), and VDW-
HRG with a ¼ 329 MeV fm3 and b ¼ 3.42 fm3 (solid blue lines). Lattice QCD results of Wuppertal-Budapest [1] and HotQCD [2]
Collaborations are shown, respectively, by symbols and green bands.
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the matter is meson dominated at μB ¼ 0, and the mesons
are modeled as noninteracting, no significant suppression
of thermodynamic functions is seen, in contrast to earlier
studies [20,21], where constant EV interactions between all
hadrons were assumed. The energy density is somewhat
below the lattice data at T > 160 MeV for VDW-HRG.
This may be explained by missing heavy Hagedorn states
which add a significant contribution to the energy density
[21]. The temperature dependence of the speed of sound
squared, c2s , is consistent with lattice data and shows a
minimum at T ∼ 155–160 MeV, in contrast to the IHRG
where c2s decreases slowly and monotonically.
In addition to the thermodynamical functions, the VDW-

HRG model allows us to calculate the fluctuations of
conserved charges:

χBSQlmn ¼ ∂lþmþnp=T4

∂ðμB=TÞl∂ðμS=TÞm∂ðμQ=TÞn : ð6Þ

The fluctuations of the net number of light quarks L ¼
ðuþ dÞ=2 ¼ ð3Bþ SÞ=2 are also considered.
The temperature dependencies of the second order

susceptibilities are shown in Fig. 2. These include
(a) net number of light quarks χL2 , (b) net baryon number
χB2 , (c) net strangeness χ

S
2 , and (d) baryon-electric charge

correlator χBQ11 . The χL2 calculated within the VDW-HRG
model shows a very different behavior compared to IHRG
at T > 160 MeV, and agrees well with the lattice data [4]
up to T ¼ 180 MeV. A qualitatively similar picture is
obtained for χB2 . The qualitative difference between IHRG
and VDW-HRG models appears to be driven by the EV
interaction terms between (anti)baryons, while the inclu-
sion of VDW attraction leads to an improved agreement
with the lattice data. The strangeness susceptibility χS2 is
described fairly well by the IHRG model, but appears to be
underestimated by the VDW-HRG model. We have also
found that the baryon-strangeness correlator (not shown in
plots) is rather notably underestimated by all considered
HRG models. Does this reflect the presence of hitherto
undiscovered strange hadrons? The inclusion of such states
was shown to improve the agreement between lattice data
and IHRG [28,29]. The correlator χBQ11 between the net
baryon number and net electric charge has a very different
temperature dependence in IHRG and VDW-HRG. In the
IHRG model the χBQ11 increases rapidly at T > 150 MeV, in
stark contrast to the lattice data. In the VDW-HRG model,
this correlator has a broad bump with a maximum at
T ∼ 160–190 MeV, showing a behavior which is in quali-
tative agreement with the correlator obtained on the lattice.
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FIG. 2. The temperature dependence of the second order susceptibilities of conserved charges. These include (a) net number of light
quarks χL2 , (b) net baryon number χB2 , (c) net strangeness χ

S
2 , and (d) baryon-electric charge correlator χ

BQ
11 . Calculations are done within

IHRG (dashed black lines), EV-HRG (dash-dotted red lines), and VDW-HRG (solid blue lines). Lattice QCD results of the Wuppertal-
Budapest [4,7] (for χBQ11 preliminary results [30,31] are used) and HotQCD [5] Collaborations are shown, respectively, by symbols and
green bands.
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The higher order fluctuations are also analyzed and
exhibited in Fig. 3. All considered observables show very
different behavior between IHRG and VDW-HRG. The
net-light number χL4=χ

L
2 monotonically increases in the

IHRG model and overshoots the lattice data at
T ∼ 140 MeV. The VDW-HRG model, in contrast, yields
a nonmonotonic behavior with a wide peak at
T ∼ 120–145 MeV, resembling the lattice data [7], which
peaks at slightly higher temperature. The peak in the T
dependence of net strangeness χS4=χ

S
2 is relatively well

reproduced within the VDW-HRG model. In contrast, the
IHRG model shows no maximum at all. It is remarkable
that our model shows flavor hierarchy: The peak for net-
light number χ4=χ2 is at smaller temperatures as compared
to the peak in net strangeness. The same result is seen in the
lattice data. It was argued that this observation is related to
the flavor separation in the deconfinement transition in
QCD [7]. Since the VDW-HRG model has only hadronic
degrees of freedom, the present results cast doubt on this
interpretation to trace back to deconfinement the observed
flavor dependence in χ4=χ2, as well as the presence of the
peaks themselves. Turning to higher-order fluctuations of
net-baryon number: The net-baryon kurtosis, χB4 =χ

B
2 , shows

the expected Skellam behavior for IHRGmodel with values

very close to unity. The VDW-HRG model, on the other
hand, shows a stark decrease at T ¼ 130–165 MeV, i.e., in
the so-called “crossover region,” even though the VDW-
HRG model does not contain any transition to the quark-
gluon degrees of freedom. The χB4 =χ

B
2 even turns negative at

T > 165 MeV. This decrease of χB4 =χ
B
2 is also seen on the

lattice [6], although it starts at higher T ¼ 145 MeV and
χB4 =χ

B
2 does not become negative. Also, the temperature

dependence of the sixth order cumulant ratio χB6 =χ
B
2 is

predicted: The VDW-HRG model exhibits very strong
variations and nonmonotonic behavior in the crossover
region. Will a similarly dramatic T-dependent behavior be
observed in corresponding lattice simulations?
Finally, the kurtosis of net-baryon fluctuations at finite

baryon density is explored [Fig. 3(d)]. For simplicity it is
assumed that μS ¼ μQ ¼ 0. The region of negative χB4 =χ

B
2 at

small μB is smoothly connected to the region of the liquid-
vapor phase transition in nuclear matter, and seems relevant
for “chemical freeze-out” in heavy-ion collisions (see
dashed line). The VDW-HRG model suggests nonmono-
tonic behavior of χ4=χ2 with respect to collision energy, in
stark contrast to IHRG [32]. This implies that nontrivial
fluctuations of net-baryon number in heavy-ion collisions
[33–35] may simply be a manifestation of the nuclear
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liquid-gas phase transition (see also Refs. [13] and [36]).
As VDW interactions also affect the thermal fits [26,37],
this question demands further study.
For many observables, the quantitative agreement of the

VDW-HRG model calculations presented here with the
lattice data in the crossover region is not perfect. This is
hardly surprising. Indeed, we have modeled the VDW
interactions between baryons in the simplest way possible:
It is assumed that the VDW interactions between all
baryons are the same as those between nucleons, as
obtained from nuclear matter properties at T ¼ 0.
Conceptually, the VDW-HRG model is quite different
from an underlying fundamental QCD theory. Still, the
presented analysis is essentially parameter-free, in the sense
that no new parameters which could be adjusted to lattice
data were introduced. Indeed, the two VDW parameters
had been fixed by reproducing the saturation properties of
nuclear matter [17,19], independently from any lattice data.
While there are other model parameters, e.g., the hadron list
and its properties, they are known and fixed experimentally.
It is feasible that VDW parameters are different for different
baryon pairs. In the course of calculations, it was noticed
that the agreement of the VDW-HRG with the lattice data is
improved by taking smaller values of the nucleon or baryon
EV parameter, b≃ 2–3 fm3. Such modification does not
necessarily break down the existing agreement of our
model with the properties of nuclear matter: As suggested
in Ref. [38], the heavier and/or strange baryons may have
smaller eigenvolumes, thus reducing the average b. The
present VDW-HRG model leaves plenty of room for
improvement. Owing to the expectation that possible
meson-related VDW interactions are considerably weaker
than the baryon-baryon VDW interactions, we do not
expect major qualitative changes to the results presented
in this Letter for baryon number susceptibilities. This,
however, may not be the case for other observables and
should be carefully explored in future works.
To summarize, a minimal extension of the IHRG model

is presented which includes both attractive and repulsive
VDW interactions between baryons, with parameters a and
b taken from previous fits to the ground state of nuclear
matter. Compared to the usually used IHRG model, the
VDW-HRG model shows a qualitatively different behavior
of most fluctuations and correlations of conserved charges
in the crossover region at zero chemical potential. This
behavior resembles closely the lattice QCD results. These
results hint towards the crucial importance of the VDW
interactions in hadron gas, and indicate that commonly
performed comparisons of IHRG with the lattice data may
result in misleading conclusions. Particularly, our results
suggest that hadrons do not melt quickly with increasing
temperature, as one could conclude on the basis of the
IHRG. It is feasible that the nuclear liquid-gas phase
transition manifests itself into significant nontrivial fluc-
tuations of net-baryon number in heavy-ion collisions. The

influence of VDW interactions on thermal fits to hadron
yield data from heavy-ion collisions is another possibility
which will be explored.
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