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The uncertainty principle is considered to be one of the most striking features in quantum mechanics. In
the textbook literature, uncertainty relations usually refer to the preparation uncertainty which imposes a
limitation on the spread of measurement outcomes for a pair of noncommuting observables. In this work,
we study the preparation uncertainty for the angular momentum, especially for spin-1=2. We derive
uncertainty relations encompassing the triple components of angular momentum and show that, compared
with the relations involving only two components, a triple constant 2=

ffiffiffi

3
p

often arises. Intriguingly, this
constant is the same for the position and momentum case. Experimental verification is carried out on a
single spin in diamond, and the results confirm the triple constant in a wide range of experimental
parameters.
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Introduction.—The uncertainty principle was first pro-
posed by Heisenberg in a thought experiment showing that
the measurement of an electron’s position disturbs the
momentum inevitably [1]. In the ensuing few years,
Kennard [2], Weyl [3], Robertson [4], and Schrödinger
[5] derived mathematically rigorous relations, such as the
famous Heisenberg-Robertson uncertainty relation [4]

ΔAΔB ≥
1

2
jh½A;B�ij; ð1Þ

with the standard deviation ΔΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΩ2i − hΩi2
p

for the
observable Ω ¼ A or B, the angle brackets hi denoting the
expectation of an operator with respect to a given state ρ,
and ½A;B� ¼ AB − BA. The inequality imposes a trade-off
between the statistical dispersionsΔA andΔB of the pair of
noncommuting observables A and B for the given quantum
state ρ. This type of uncertainty, often termed as the
preparation uncertainty, deals with the spread of measure-
ment outcomes rather than Heisenberg’s original idea,
which investigates measurement inaccuracies [6–12]. In
this Letter, we discuss only the preparation uncertainty.
The uncertainty principle can be described by various

relations [13–31], but most well-known uncertainty relations
deal with two observables till now. In contrast to the two-
observable relation in (1), which can be derived via the
Cauchy-Schwarz inequality, it is difficult to obtain a non-
trivial multiobservable uncertainty relation that has a form

similar to (1), although attempts to encompass three or
more observables have a long history since Robertson’s
work in 1934 [32–45]. Recently, an uncertainty relation for
three pairwise canonical observables p, q, and r satisfying
½p; q� ¼ ½q; r� ¼ ½r; p� ¼ −iℏwith r ¼ −p − qwas derived
by Kechrimparis and Weigert [46]. Here p and q are the
momentum and position, respectively. From the inequality
(1), one immediately obtains ΔpΔq ≥ ℏ=2, ΔqΔr ≥ ℏ=2,
and ΔrΔp ≥ ℏ=2. By multiplying these inequalities and
taking the square root, one gets ΔpΔqΔr ≥ ðℏ=2Þ3=2.
However, this inequality is not tight. In other words, there
is no state satisfying such a lower bound. By introducing the
triple constant τ ¼ 2=

ffiffiffi

3
p

, the tight triple uncertainty relation
ΔpΔqΔr ≥ ðτℏ=2Þ3=2 is established.
In contrast to the couple of observables p and q, the

latecomer r seems artificial and may not exhibit an explicit
physical meaning. Yet the three components of angular
momentum form a natural triple [47]. In this Letter, we
formulate tight uncertainty relations satisfied by the triple
components of angular momentum and show that the triple
constant τ also arises. An experimental test is performed on
a single spin in diamond.
Uncertainty relations.—In this Letter, we always set

ℏ ¼ 1. Let Sx, Sy, and Sz be the angular momentum
operators satisfying commutation relations ½Sx; Sy� ¼ iSz,
½Sz; Sx� ¼ iSy, and ½Sy; Sz� ¼ iSx. From the inequality (1),
one obtains
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ΔSxΔSy ≥
1

2
jhSzij;ΔSyΔSz ≥

1

2
jhSxij;ΔSzΔSx ≥

1

2
jhSyij:

ð2Þ
By multiplying the above inequalities and taking the square
root, one directly gets a trivial relation ΔSxΔSyΔSz ≥
j 1
8
hSxihSyihSzij1=2, where the equality holds only when

both sides are zero. We tighten the lower bound for spin-
1=2 by introducing the triple constant τ (see a sketch of the
proof in Supplemental Material [48]), i.e.,

ΔSxΔSyΔSz ≥
�
�
�
�

τ3

8
hSxihSyihSzi

�
�
�
�

1=2

: ð3Þ

The equality in (3) holds when jrxj ¼ jryj ¼ jrzj ¼ 1=
ffiffiffi

3
p

or ðjrxj − 1Þðjryj − 1Þðjrzj − 1Þ ¼ 0. Here rx, ry, and rz are
the components of the Bloch vector r of a qubit state with
the density matrix ρ ¼ ð1þ r · σÞ=2.
Besides multiplicative form uncertainty relations, one

may also tighten additive form relations. The inequalities
in (2) entail

ðΔSxÞ2þðΔSyÞ2 ≥ jhSzij;
ðΔSyÞ2þðΔSzÞ2 ≥ jhSxij;
ðΔSzÞ2þðΔSxÞ2 ≥ jhSyij: ð4Þ

From the above inequalities, one immediately gets
ðΔSxÞ2 þ ðΔSyÞ2 þ ðΔSzÞ2 ≥ 1

2
ðjhSxij þ jhSyij þ jhSzijÞ,

which is again not tight. We also tighten the lower bound by
introducing the triple constant τ (see a sketch of the proof in
Supplemental Material [48]), i.e.,

ðΔSxÞ2 þ ðΔSyÞ2 þ ðΔSzÞ2 ≥
τ

2
ðjhSxij þ jhSyij þ jhSzijÞ:

ð5Þ
The equality in (5) is attained if and only if jrxj ¼ jryj ¼
jrzj ¼ 1=

ffiffiffi

3
p

for spin-1=2.
Interestingly, the uncertainty relations (2)–(5) are analo-

gous to the geometric relations of an equilateral triangle, as
depicted in Fig. 1 (see proofs of these geometric relations in
Supplemental Material [48]). We leave the experimental
demonstrations of the uncertainty relations (3) and (5) to
the next section.
The uncertainty relations (3) and (5) have state-

dependent lower bounds. It is similar for uncertainty
relations with state-independent lower bounds. The pair-
wise inequalities for spin-1=2 [8], namely, ðΔSxÞ2 þ
ðΔSyÞ2 ≥ 1=4, ðΔSyÞ2 þ ðΔSzÞ2 ≥ 1=4, and ðΔSzÞ2 þ
ðΔSxÞ2 ≥ 1=4, immediately yield the inequality
ðΔSxÞ2 þ ðΔSyÞ2 þ ðΔSzÞ2 ≥ 3=8, which is not tight. A
tight lower bound needs an additional factor τ2 [43,50], i.e.,

ðΔSxÞ2 þ ðΔSyÞ2 þ ðΔSzÞ2 ≥
1

2
¼ 3

8
τ2: ð6Þ

The equality is attained if and only if jrj ¼ 1; i.e., the qubit
is in a pure state. The relation (6) is also supported by our
experiment.

Here it should be noted that the inequality (5) is, in fact,
valid for any spin quantum number. The relation (6) turns
into

ðΔSxÞ2 þ ðΔSyÞ2 þ ðΔSzÞ2 ≥ s ð7Þ
for the spin quantum number s [50], and the factor τ2 does
not hold for s ≥ 1 (see the explanation in Supplemental
Material [48]). It should also be noted that, although the
state-dependent lower bound in the inequality (3) vanishes
in some cases, this uncertainty relation is not covered by the
prominent relation (7) and is valuable in its own right.
Experimental demonstration.—To verify the uncertainty

relations (3) and (5), we carry out the experiment on a
negatively charged nitrogen-vacancy (NV) center in dia-
mond. The single spins in NV centers are convenient to
initialize and read out, have long coherence times, and can be
manipulated with high precision. These advantages enable
NV centers to be widely applied in nanoscale sensing,
quantum information, and fundamental physics [51–54].
The diamond we use is a bulk sample with the 13C

nuclide at the natural abundance of about 1.1% and the
nitrogen impurity less than 5 ppb. The NV center is
composed of one substitutional nitrogen atom and an
adjacent vacancy as shown in Fig. 2(a). The electronic
ground state 3A2 is a triplet state and has a zero-field
splitting of about 2.87 GHz. With a static magnetic field of
around 510 G applied along the NV axis, both the electron
spin and the host nitrogen nuclear spin are polarized by
optical pumping [55,56]. The two levels jms ¼ 0i and
jms ¼ −1i act as a spin-1=2 system or qubit which is
manipulated by resonant microwave (MW) pulses. The
spin state can be read out by optical excitation and red
fluorescence detection. To enhance the fluorescence

FIG. 1. Geometric analog of uncertainty relations (2)–(5). The
equilateral triangle has vertices A, B, C and a point P inside. The
lengths of the line segments PA, PB, and PC are denoted by jPAj,
jPBj, and jPCj, respectively. The areas of the triangles PAB,
PBC, and PCA are denoted by j△PABj, j△PBCj, and j△PCAj,
respectively. These geometric quantities have the same
relations as the inequalities (2)–(5) under the correspondence
jPAj↔ΔSx, jPBj↔ΔSy, jPCj↔ΔSz and j△PABj↔ jhSzij=4,
j△PBCj ↔ jhSxij=4, j△PCAj ↔ jhSyij=4.
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collection, a solid immersion lens is fabricated on the
diamond above the NV center [57,58]. In the following, the
rotating frame determined by the resonant MW is adopted,
and, in this rotating frame, the two levels jms ¼ 0i and
jms ¼ −1i are labeled by j0i and j1i, respectively.
At first, the qubit is initialized to the state j0i, and then

the desired state jψi is prepared by an operation U. After
that, an operation V is applied. Finally, the measurement
in the fj0i; j1ig basis, or, equivalently, the measurement of
the observable Sz, is performed. The combined effect of the
operation V and the measurement of Sz amounts to the
measurement of V†SzV. In our experiment, the process
from initialization to measurement is repeated four million
times to acquire the expectation of V†SzV associated with
the state jψi. The standard deviation can then be calculated
as ΔðV†SzVÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 − hV†SzVi2
p

. Different observables,
including Sx, Sy, and Sz, can be constructed by adjusting V.
We select two series of pure states jψi with Bloch

vectors r1 ¼ ð ffiffiffiffiffiffiffiffi

2=3
p

cosφ;
ffiffiffiffiffiffiffiffi

2=3
p

sinφ; 1=
ffiffiffi

3
p Þ and r2 ¼

ðsin θ= ffiffiffi

2
p

; sin θ=
ffiffiffi

2
p

; cos θÞ as illustrated in Figs. 3(a) and
4(a). The expectations of Sx, Sy, and Sz are illustrated in
Figs. 3(b) and 4(b). The verification of the multiplicative
uncertainty relation in (3) is shown in Figs. 3(c) and 4(c).
The results demonstrate that, for the product ΔSxΔSyΔSz,
the lower bound with the triple constant τ, namely,
jτ3hSxihSyihSzi=8j1=2, outperforms the naive lower bound
without the triple constant, namely, jhSxihSyihSzi=8j1=2. The
results for the sum ðΔSxÞ2 þ ðΔSyÞ2 þ ðΔSzÞ2 are shown
in Figs. 3(d) and 4(d). The lower bound with the triple
constant τ, namely, τðjhSxij þ jhSyij þ jhSzijÞ=2, outper-
forms the naive one without the triple constant, namely,
ðjhSxij þ jhSyij þ jhSzijÞ=2. The same results also support
the uncertainty relation in (6) which was derived previously
[43,50]. Therefore, the triple uncertainty relations (3), (5),
and (6) are confirmed by the experimental results.

Discussions.—The experimental errors mainly come
from the imperfection of microwave pulses and the fluc-
tuation of photon counts. The error bars are smaller than the
data markers in Figs. 3(b) and 4(b) but are much larger in
Figs. 3(c), 3(d), 4(c), and 4(d). The enlargement of errors is
due to error propagation.
In addition to the triple uncertainty relations (3), (5),

and (6), some other uncertainty relations exhibit similar
behavior. For instance, from the inequality ðΔAÞ2þðΔBÞ2≥
½ΔðAþBÞ�2=2 [28], one has

ðΔSxÞ2 þ ðΔSyÞ2 þ ðΔSzÞ2

≥
1

4
f½ΔðSx þ SyÞ�2 þ ½ΔðSy þ SzÞ�2 þ ½ΔðSz þ SxÞ�2g:

By tightening the above inequality for spin-1=2, we have

ðΔSxÞ2þðΔSyÞ2þðΔSzÞ2

≥
2

5
f½ΔðSxþSyÞ�2þ½ΔðSyþSzÞ�2þ½ΔðSzþSxÞ�2g: ð8Þ

(a) (b)

(c)

FIG. 2. Experimental system and method. (a) Negatively
charged NV center in diamond and the electronic energy level
structure. The NV center consists of a substitutional nitrogen
atom and a neighboring vacancy. The electronic ground state 3A2

is a triplet state, where two levels are encoded as a qubit and
exploited in the experiment. (b) Quantum circuit for qubit control
and measurement. (c) Pulse sequence for implementing the
quantum circuit. In the experiment, such a process is repeated
four million times.

(a) (b)

(c) (d)

FIG. 3. Experimental results. (a) Bloch sphere and the vector r1
with θ ¼ arctan

ffiffiffi

2
p

. (b) Expectations of Sx, Sy, and Sz. The red,
olive, and blue curves, in turn, represent the theoretical values
of hSxi, hSyi, and hSzi. The corresponding scattered points
represent the experimental values. (c) Experimental demonstra-
tion for the uncertainty relation of the multiplicative form.
The solid orange, solid green, and dashed green curves, in turn,
represent the theoretical values of Pro0, Pro1, and Pro2,
where Pro0 ¼ ΔSxΔSyΔSz, Pro1 ¼ jτ3hSxihSyihSzi=8j1=2, and
Pro2 ¼ jhSxihSyihSzi=8j1=2. The orange and green scattered
points represent the experimental value of Pro0 and Pro1,
respectively. (d) Experimental demonstration for the uncertainty
relations of the additive form. The solid magenta, solid violet,
and dashed violet curves, in turn, represent the theoretical
values of Sum0, Sum1, and Sum2, where Sum0 ¼
ðΔSxÞ2 þ ðΔSyÞ2 þ ðΔSzÞ2, Sum1¼τðjhSxijþjhSyijþjhSzijÞ=2,
and Sum2 ¼ ðjhSxij þ jhSyij þ jhSzijÞ=2. The magenta and vio-
let scattered points represent the experimental value of Sum0 and
Sum1, respectively. Error bars represent �1 s.d.
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The equality holds if and only if the spin-1=2 system is in a
pure state, which should also satisfy rx þ ry þ rz ¼ 0.
One can also derive tight entropic uncertainty relations

for spin-1=2. The typical entropic uncertainty relation
derived by Maassen and Uffink is given by
HðAjρÞ þHðBjρÞ ≥ −2 log cðA; BÞ, where HðAjρÞ and
HðBjρÞ are the Shannon entropy of the measurement
outcomes of A and B with a given state ρ and the number
cðA;BÞ ¼ maxi;jjhaijbjij with jaii and jbji being the
eigenstates of A and B, respectively [18]. From the pairwise
relations HðSxÞ þHðSyÞ ≥ log 2, HðSyÞ þHðSzÞ ≥ log 2,
and HðSzÞ þHðSxÞ ≥ log 2, one has HðSxÞ þHðSyÞ þ
HðSzÞ ≥ 3

2
log 2, which is again not tight. A tight lower

bound needs an additional factor τ2 [34,35,39], i.e.,

HðSxÞ þHðSyÞ þHðSzÞ ≥ log 4 ¼ 3τ2

2
log 2: ð9Þ

The equality holds if and only if the qubit is in one of the
eigenstates of Sx, Sy, or Sz.
Additionally, we conjecture that the relation (3) is

also valid for any spin quantum number s. The equality
holds when hS2xi ¼ hS2yi ¼ hS2zi ¼ sðsþ 1Þ=3 and
jhSxij ¼ jhSyij ¼ jhSzij ¼ s=

ffiffiffi

3
p

and also holds when
ðjhSxij − sÞðjhSyij − sÞðjhSyij − sÞ ¼ 0.
Conclusion.—We have derived tight uncertainty rela-

tions for the triple components of angular momentum in the
spin-1=2 representation. The triple constant τ exhibits its
universality to some extent. The experimental demonstra-
tion with the single spin of an NV center consistently
supports the theoretical results. Our work enriches the
uncertainty relations of more than two observables.

This work was supported by the 973 Program (Grants
No. 2013CB921800 and No. 2016YFA0502400), the
National Natural Science Foundation of China (Grants
No. 11227901, No. 31470835, No. 11275131, and
No. 91636217), the China Postdoctoral Science
Foundation (Grant No. 2016M600997), the CAS (Grants
No. XDB01030400, No. QYZDY-SSW-SLH004, and
No. YIPA2015370), and the Fundamental Research
Funds for the Central Universities (WK2340000064).
W.M. and B. C. contributed equally to this work.

*feishm@cnu.edu.cn
†djf@ustc.edu.cn

[1] W. Heisenberg, Über den anschaulichen Inhalt der quan-
tentheoretischen Kinematik und Mechanik, Z. Phys. 43, 172
(1927); in Quantum Theory and Measurement, edited by
J. A. Wheeler and W. H. Zurek (Princeton University Press,
Princeton, NJ, 1983), p. 62.

[2] E. H. Kennard, Zur Quantenmechanik einfacher Bewegung-
stypen, Z. Phys. 44, 326 (1927).

[3] H. Weyl, Gruppentheorie Und Quantenmechanik (Hirzel,
Leipzig, 1928).

[4] H. P. Robertson, The uncertainty principle, Phys. Rev. 34,
163 (1929).

[5] E. Schrödinger, Zum Heisenbergschen Unschärfeprinzip,
Sitz. Preuss. Akad. Wiss. (Phys.-Math. Klasse) 19, 296
(1930); A. Angelow and M.-C. Batoni, About Heisenberg
uncertainty relation, arXiv:9903100v3.

[6] P. Busch, T. Heinonen, and P. Lahti, Heisenberg uncertainty
principle, Phys. Rep. 452, 155 (2007).

[7] P. Busch, P. Lahti, and R. F. Werner, Proof of Heisenberg
Error-Disturbance Relation, Phys. Rev. Lett. 111, 160405
(2013).

[8] P. Busch, P. Lahti, and R. F. Werner, Heisenberg uncertainty
for qubit measurements, Phys. Rev. A 89, 012129 (2014).

[9] P. Busch, P. Lahti, and R. F. Werner, Quantum root-mean-
square error and measurement uncertainty relations, Rev.
Mod. Phys. 86, 1261 (2014).

[10] F. Buscemi, M. J. W. Hall, M. Ozawa, and M.M. Wilde,
Noise and Disturbance in Quantum Measurements: An
Information-Theoretic Approach, Phys. Rev. Lett. 112,
050401 (2014).

[11] G. Sulyok, S. Sponar, B. Demirel, F. Buscemi, M. J. W.
Hall, M. Ozawa, and Y. Hasegawa, Experimental Test of
Entropic Noise-Disturbance Uncertainty Relations for Spin-
1=2 Measurements, Phys. Rev. Lett. 115, 030401 (2015).

[12] W. Ma, Z. Ma, H. Wang, Y. Liu, Z. Chen, F. Kong, Z. Li, M.
Shi, F. Shi, S.-M. Fei, and J. Du, Experimental Demon-
stration of Heisenberg’s Measurement Uncertainty Relation
Based on Statistical Distances, Phys. Rev. Lett. 116, 160405
(2016).

[13] I. I. Hirschman, A note on entropy, Am. J. Math. 79, 152
(1957).

[14] W. Beckner, Inequalities in Fourier analysis, Ann. Math.
102, 159 (1975).

[15] I. Białynicki-Birula and J. Mycielski, Uncertainty relations
for information entropy in wave mechanics, Commun.
Math. Phys. 44, 129 (1975).

(a) (b)

(c) (d)

FIG. 4. Experimental results. (a) Bloch sphere and the vector r2
with φ ¼ π=4. (b) Expectations of Sx, Sy, and Sz. (c) Experimental
demonstration for the uncertainty relation of the multiplicative
form. (d) Experimental demonstration for the uncertainty rela-
tions of the additive form. All the symbols have the same
meaning as those in Fig. 3.

PRL 118, 180402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
5 MAY 2017

180402-4

https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01391200
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRev.34.163
http://arXiv.org/abs/9903100v3
https://doi.org/10.1016/j.physrep.2007.05.006
https://doi.org/10.1103/PhysRevLett.111.160405
https://doi.org/10.1103/PhysRevLett.111.160405
https://doi.org/10.1103/PhysRevA.89.012129
https://doi.org/10.1103/RevModPhys.86.1261
https://doi.org/10.1103/RevModPhys.86.1261
https://doi.org/10.1103/PhysRevLett.112.050401
https://doi.org/10.1103/PhysRevLett.112.050401
https://doi.org/10.1103/PhysRevLett.115.030401
https://doi.org/10.1103/PhysRevLett.116.160405
https://doi.org/10.1103/PhysRevLett.116.160405
https://doi.org/10.2307/2372390
https://doi.org/10.2307/2372390
https://doi.org/10.2307/1970980
https://doi.org/10.2307/1970980
https://doi.org/10.1007/BF01608825
https://doi.org/10.1007/BF01608825


[16] D. Deutsch, Uncertainty in Quantum Measurements, Phys.
Rev. Lett. 50, 631 (1983).

[17] K. Kraus, Complementary observables and uncertainty
relations, Phys. Rev. D 35, 3070 (1987).

[18] H. Maassen and J. B. M. Uffink, Generalized Entropic
Uncertainty Relations, Phys. Rev. Lett. 60, 1103 (1988).

[19] S. L. Braunstein, C. M. Caves, and G. J. Milburn, General-
ized uncertainty relations: Theory, examples, and Lorentz
invariance, Ann. Phys. (N.Y.) 247, 135 (1996).

[20] J. Sánchez-Ruiz, Optimal entropic uncertainty relation in
two-dimensional Hilbert space, Phys. Lett. A 244, 189
(1998).

[21] G. C. Ghirardi, L. Marinatto, and R. Romano, Optimal
entropic uncertainty relation in two-dimensional Hilbert
space, Phys. Lett. A 317, 32 (2003).

[22] I. Bialynicki-Birula, Formulation of the uncertainty rela-
tions in terms of the Rényi entropies, Phys. Rev. A 74,
052101 (2006).

[23] S. Wehner and A. Winter, Entropic uncertainty relations—A
survey, New J. Phys. 12, 025009 (2010).

[24] I. Bialynicki-Birula and Ł. Rudnicki, in Statistical Complex-
ity, edited by K. D. Sen (Springer, Dordrecht, 2011), p. 1.

[25] M. H. Partovi, Majorization formulation of uncertainty in
quantum mechanics, Phys. Rev. A 84, 052117 (2011).

[26] Z. Puchała, Ł. Rudnicki, and K. Zyczkowski, Majorization
entropic uncertainty relations, J. Phys. A 46, 272002 (2013).

[27] S. Friedland, V. Gheorghiu, and G. Gour, Universal Un-
certainty Relations, Phys. Rev. Lett. 111, 230401 (2013).

[28] L. Maccone and A. K. Pati, Stronger Uncertainty Relations
for All Incompatible Observables, Phys. Rev. Lett. 113,
260401 (2014).

[29] J. Zhang, Y. Zhang, and C.-s. Yu, Rényi entropy uncertainty
relation for successive projective measurements, Quantum
Inf. Process. 14, 2239 (2015).

[30] J.-L. Li and C.-F. Qiao, Reformulating the quantum un-
certainty relation, Sci. Rep. 5, 12708 (2015).

[31] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner,
Entropic uncertainty relations and their applications, Rev.
Mod. Phys. 89, 015002 (2017).

[32] H. P. Robertson, An Indeterminacy Relation for Several
Observables and Its Classical Interpretation, Phys. Rev. 46,
794 (1934).

[33] I. D. Ivanovic, An inequality for the sum of entropies of
unbiased quantum measurements, J. Phys. A 25, L363
(1992).

[34] J. Sánchez, Entropic uncertainty and certainty relations for
complementary observables, Phys. Lett. A 173, 233 (1993).

[35] J. Sánchez-Ruiz, Improved bounds in the entropic uncer-
tainty and certainty relations for complementary observ-
ables, Phys. Lett. A 201, 125 (1995).

[36] D. A. Trifonov and S. G. Donev, Characteristic uncertainty
relations, J. Phys. A 31, 8041 (1998).

[37] M. I. Shirokov, Interpretation of uncertainty relations for
three or more observables, arXiv:0404165.

[38] A. K. Pati and P. K. Sahu, Sum uncertainty relation in
quantum theory, Phys. Lett. A 367, 177 (2007).

[39] S. Wehner and A. Winter, Higher entropic uncertainty
relations for anti-commuting observables, J. Math. Phys.
(N.Y.) 49, 062105 (2008).

[40] Y. Huang, Variance-based uncertainty relations, Phys. Rev.
A 86, 024101 (2012).

[41] J. Kaniewski, M. Tomamichel, and S. Wehner, Entropic
uncertainty from effective anticommutators, Phys. Rev. A
90, 012332 (2014).

[42] B.Chen andS.-M.Fei, Sumuncertainty relations for arbitrary
N incompatible observables, Sci. Rep. 5, 14238 (2015).

[43] A. A. Abbott, P.-L. Alzieu, M. J. W. Hall, and C. Branciard,
Tight state-independent uncertainty relations for qubits,
Mathematics 4, 8 (2016).

[44] B. Chen, S.-M. Fei, and G.-L. Long, Sum uncertainty
relations based on Wigner-Yanase skew information, Quan-
tum Inf. Process. 15, 2639 (2016).

[45] B. Chen, N.-P. Cao, S.-M. Fei, and G.-L. Long, Variance-
based uncertainty relations for incompatible observables,
Quantum Inf. Process. 15, 3909 (2016).

[46] S. Kechrimparis and S. Weigert, Heisenberg uncertainty
relation for three canonical observables, Phys. Rev. A 90,
062118 (2014).

[47] L. Dammeier, R. Schwonnek, and R. F. Werner, Uncertainty
relations for angular momentum, New J. Phys. 17, 093046
(2015).

[48] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.180402, which in-
cludes Ref. [49], for theoretical and experimental details.

[49] X. Rong, J. Geng, Z. Wang, Q. Zhang, C. Ju, F. Shi, C.-K.
Duan, and J. Du, Implementation of Dynamically Corrected
Gates on a Single Electron Spin in Diamond, Phys. Rev.
Lett. 112, 050503 (2014).

[50] H. F. Hofmann and S. Takeuchi, Violation of local uncer-
tainty relations as a signature of entanglement, Phys. Rev. A
68, 032103 (2003).

[51] M.W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. L. Hollenberg, The nitrogen-vacancy
colour centre in diamond, Phys. Rep. 528, 1 (2013).

[52] R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen,
Nitrogen-vacancy centers in diamond: Nanoscale sensors
for physics and biology, Annu. Rev. Phys. Chem. 65, 83
(2014).

[53] S. Prawer and I. Aharonovich, Quantum Information
Processing with Diamond (Woodhead, Cambridge, England,
2014).

[54] J. Wrachtrup and A. Finkler, Single spin magnetic reso-
nance, J. Magn. Reson. 269, 225 (2016).

[55] V. Jacques, P. Neumann, J. Beck, M. Markham, D.
Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F.
Jelezko, and J. Wrachtrup, Dynamic Polarization of Single
Nuclear Spins by Optical Pumping of Nitrogen-Vacancy
Color Centers in Diamond at Room Temperature, Phys. Rev.
Lett. 102, 057403 (2009).

[56] T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H.
Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R.
Hanson, and V. V. Dobrovitski, Decoherence-protected
quantum gates for a hybrid solid-state spin register, Nature
(London) 484, 82 (2012).

[57] L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A.
Alkemade, and R. Hanson, High-fidelity projective read-out
of a solid-state spin quantum register, Nature (London) 477,
574 (2011).

[58] X. Rong, J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong,
Z. Jiang, Y. Wu, and J. Du, Experimental fault-tolerant
universal quantum gates with solid-state spins under am-
bient conditions, Nat. Commun. 6, 8748 (2015).

PRL 118, 180402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
5 MAY 2017

180402-5

https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevD.35.3070
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1016/S0375-9601(98)00292-8
https://doi.org/10.1016/S0375-9601(98)00292-8
https://doi.org/10.1016/j.physleta.2003.08.029
https://doi.org/10.1103/PhysRevA.74.052101
https://doi.org/10.1103/PhysRevA.74.052101
https://doi.org/10.1088/1367-2630/12/2/025009
https://doi.org/10.1103/PhysRevA.84.052117
https://doi.org/10.1088/1751-8113/46/27/272002
https://doi.org/10.1103/PhysRevLett.111.230401
https://doi.org/10.1103/PhysRevLett.113.260401
https://doi.org/10.1103/PhysRevLett.113.260401
https://doi.org/10.1007/s11128-015-0950-z
https://doi.org/10.1007/s11128-015-0950-z
https://doi.org/10.1038/srep12708
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/PhysRev.46.794
https://doi.org/10.1103/PhysRev.46.794
https://doi.org/10.1088/0305-4470/25/7/014
https://doi.org/10.1088/0305-4470/25/7/014
https://doi.org/10.1016/0375-9601(93)90269-6
https://doi.org/10.1016/0375-9601(95)00219-S
https://doi.org/10.1088/0305-4470/31/39/016
http://arXiv.org/abs/0404165
https://doi.org/10.1016/j.physleta.2007.03.005
https://doi.org/10.1063/1.2943685
https://doi.org/10.1063/1.2943685
https://doi.org/10.1103/PhysRevA.86.024101
https://doi.org/10.1103/PhysRevA.86.024101
https://doi.org/10.1103/PhysRevA.90.012332
https://doi.org/10.1103/PhysRevA.90.012332
https://doi.org/10.1038/srep14238
https://doi.org/10.3390/math4010008
https://doi.org/10.1007/s11128-016-1274-3
https://doi.org/10.1007/s11128-016-1274-3
https://doi.org/10.1007/s11128-016-1365-1
https://doi.org/10.1103/PhysRevA.90.062118
https://doi.org/10.1103/PhysRevA.90.062118
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1088/1367-2630/17/9/093046
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180402
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180402
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180402
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180402
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180402
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180402
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180402
https://doi.org/10.1103/PhysRevLett.112.050503
https://doi.org/10.1103/PhysRevLett.112.050503
https://doi.org/10.1103/PhysRevA.68.032103
https://doi.org/10.1103/PhysRevA.68.032103
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1146/annurev-physchem-040513-103659
https://doi.org/10.1146/annurev-physchem-040513-103659
https://doi.org/10.1016/j.jmr.2016.06.017
https://doi.org/10.1103/PhysRevLett.102.057403
https://doi.org/10.1103/PhysRevLett.102.057403
https://doi.org/10.1038/nature10900
https://doi.org/10.1038/nature10900
https://doi.org/10.1038/nature10401
https://doi.org/10.1038/nature10401
https://doi.org/10.1038/ncomms9748

