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The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is
investigated by a combination of theory and experiment. We find a rich variety of morphologies, which—
when the bending elasticity dominates over the effect of gravity—are classified into three distinct types of
states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain
and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary
conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement
with simulations and controlled physical experiments. We also discuss the effect of gravity in order to
bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus
complements recent work on elastic rope coiling and takes a significant step towards establishing a unified
understanding of how a thin elastic object interacts vertically with a solid surface.
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Introduction.—Contact between slender objects gives
rise to complex structures and behaviors in nature [1–15],
including DNA ejection from bacteriophages [2], the
folding of sheetlike tissues in developmental biology
[3,4], and the coiling of plant tendrils or roots [5–7].
Examples in daily life [16–25] include hair brushing,
arranging pony tails [16], applying gift-wrap ribbons
[17], tying shoelaces [18], rucks in a rug [19,20], coiling
elastic or liquid ropes [21–25], or the use of polymer brushes
[26], biomimetics [27–31], and coiled tubing in industry
[32]. Since frictional effects [33–37] play an important role
when slender objects are in contact with each other [15], the
interplay between friction and the elasticity of thin objects is
currently a central topic in this field of research.
A fundamental process common to a variety of the

problems listed above is the postbuckling behavior of an
elastic strip [38–43] that is subject to a vertical compressive
stress on a rigid substrate [Fig. 1(a)]. Initially, the strip takes
the form of a planar elastica, but upon further compression,
its free tip may slip [Fig. 1(b)]. The direction of this
slippage is opposite to the direction of the initial buckling
(which is determined by spontaneous symmetry breaking),
as the slip acts to reduce the overall curvature of the strip.
Despite the familiarity, simplicity, and fundamental impor-
tance of this prototypical phenomenon, its underlying
physics remains unclear thus far. For example, several
unanswered questions are when and how does the strip slip,
what factors determine the slip length, and what are the
possible resultant forms of the elastica? To answer these
basic questions, it is necessary to disentangle the complex
interplay between elasticity, geometry, friction, and gravity.
In this Letter, we investigate the above-outlined problem

using numerical, analytical, and experimental approaches.

The frictional interaction between the strip’s tip and the sur-
face of the substrate is modeled according to the Coulomb-
Amontons law [33–37], which states that the tip of the strip
remains stationary if the frictional force from the substrate,
~F ¼ ðF x;F yÞ, satisfies

jF xj ≤ μF y; ð1Þ
where μ represents the coefficient of static friction.
Equation (1) suggests that the instantaneous shape of an
elastica determines its own boundary condition. This feature
is a particular characteristic of our system and differs from
the behavior in a standard setup employed in previous

FIG. 1. Typical morphology of a strip on a solid surface.
(a) Geometry of our system and definition of the key variables. ~t
and ~n are the unit tangent and normal vectors of the strip center
line, respectively. θðsÞ represents the angle of ~t measured from
the y axis. (Note that θ here is defined negative.) The strip either
slips or is pinned, depending on the force from the substrate,
~F ¼ ðF x;F yÞ, the coefficient of static friction, μ, and the vertical
height y0. (b) Photograph of the slip motion of a strip (for
illustrative purposes only).
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elastica problems [41–43]. First, we numerically investigate
the planar deformations of a strip in the absence of gravity by
changing thevalues of the coefficient of static friction, μ, and
the height of the strip, y0, and classify the deformations into
three distinct states explained below. These morphologies,
as well as the shape transitions between them, are confirmed
by our experiments. An analytic model based on geomet-
rically exact Kirchhoff rod equations combined with the
static friction law is then developed, which accurately
predicts the onset of slip events observed in the simulations.
Finally, we explore the effect of gravity to discuss how our
system may approach those studied in the context of elastic
rope coiling [23,24].
Simulations.—To investigate the planar deformation of a

strip with slip in a geometrically nonlinear regime, we
performed systematic numerical simulations using a discrete
analog of the continuum elastica model [44]. A full detail of
our numericalmethod is given inSupplementalMaterial [45].
The top end of the strip is clamped along the vertical (y)

axis. Generally, when the strip’s tip is in contact with the
substrate, the tip experiences forces and moments from the
substrate but is otherwise free. In this study, we assume
moment-free boundary conditions at the tip, even when in
contact with the substrate. The force from the substrate is
determined according to Eq. (1) [33]. Once jF xj exceeds
μF y, the kinetic friction force μkF y takes over, acting to
oppose the continued slipping of the strip. As soon as the
tangential force falls below this threshold, the static friction
sets in again. We confirmed that our results are insensitive
to a precise static-kinetic switching protocol (see our
Supplemental Material for further details [45]).
We change the position of the clamped end at a given

speed, so that the strip of initial length L is pushed against
the substrate from directly above, until its height reaches a
given value y0ð< LÞ. The stretching modulus is set to a
sufficiently large value, in order to restrict the typical
variation in arc length to within a few percent. Similarly, the
velocity of the clamped end is chosen to be sufficiently
small when compared to the bending relaxation time [45],
in order to minimize any protocol-dependent kinetic
effects. Throughout this work, we use a kinetic and static
frictional coefficient ratio of μk=μ ¼ 0.8, which is valid for
typical surfaces.
Slip morphology of elastica.—We consider a planar

bending deformation of a straight strip of length L,
characterized by a radius of curvature, R. The bending
torque is EI=R, where E is Young’s modulus and I is the
moment of inertia of the strip. Since the typical displace-
ment perpendicular to the strip axis is L2=R, the gravita-
tional torque acting on the strip is ρgL3=R, where ρ
represents the mass per unit length along the strip center
line. Balancing the two torques provides a so-called
“gravito-bending length” [24,41]:

Lg ¼
�
EI
ρg

�
1=3

: ð2Þ

The dimensionless parameter L=Lg quantifies the relative
importance of gravity to the elasticity. For L=Lg ≫ 1, the
strip is significantly deformed by gravity (i.e., by its own
weight), and this scenario has been extensively studied
previously [24,41]. Here, we are interested in the opposite
limit L=Lg ≪ 1, in which the behavior of a stiff strip is
effectively studied by neglecting gravitational body forces.
Our systematic numerical investigations in this regime are
summarized in a phase diagram in Fig. 2. The shapes
are classified as pinned (P) (for large μ and small
ϵy ≡ 1 − y0=L), partially slipped (PS) (for large μ and
large ϵy), and completely slipped (CS) (for small μ and
large ϵy) states. If the tip remains stationary, it is said to be a
P state; if it slips, and the final shape has an inflection point,
it is a PS state; otherwise, it is a CS state. The phase
diagram in Fig. 2 is constructed according to this protocol
[45]. We find clear boundaries between the three regions in
Fig. 2, which we now rationalize using the exact theory of
elastica and scaling arguments.
Phase boundaries.—The diagram in Fig. 2 suggests that,

between the P and CS states, the coefficient of static friction
assumes a critical value, which depends on the vertical
strain ϵy, i.e., μc ¼ μcðϵyÞ. The geometry of our analytic
theory is shown in Fig. 1(a), where the unit tangent is
parameterized as ~tðsÞ ¼ ( sin θðsÞ;− cos θðsÞ), using the
variable θðsÞ, where s is the arc length measured from the
clamped top, s ¼ 0. The relevant boundary conditions are
thus written as θð0Þ ¼ 0 and θ0ðLÞ ¼ 0, where the prime
symbol represents the derivative with respect to s. This
latter boundary condition suggests that no external moment

FIG. 2. Phase diagram of the equilibrium planar shapes of a
strip in the ðϵy; μÞ parameter space, constructed from numerical
simulations for compressive protocols in the absence of gravity.
Two different experimental data points are plotted as the thick
red × symbols. The solid line represents the theoretical prediction
based on the exact solution for the elastica curve, and the dashed
line is its approximation given by Eq. (3). Note that the theoretical
curve ends when the areal contact begins and the elastica solution
no longer exists.
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is applied at the end of the strip. We now let ~FðsÞ and ~MðsÞ
be the internal force and moment, respectively, over the
cross section of a strip at the position s, and which are
exerted by the section of the strip with an arc length greater
than s on the section of the strip with an arc length less than
s [46,47]. In the absence of any external forces and
moments, the force balance of an elastica is described

by the Kirchhoff rod equations [38,39] ~F0ðsÞ ¼ 0 and
~M0ðsÞ þ ~tðsÞ × ~FðsÞ ¼ 0 and the linear constitutive relation
~MðsÞ ¼ EIθ0ðsÞêz. Both tangential and vertical external
forces must be applied at the clamped end, i.e.,
~Fð0Þ ¼ ðF x;F yÞ, where F x and F y are yet to be deter-
mined. Solving the force-balance equation with this con-
dition and substituting it into the momentum balance
equation leads us to the shape equation for θðsÞ [42,43],
which may be written as EIθ00ðsÞ ¼ −F x cos θðsÞ−
F y sin θðsÞ. Although the equation for θðsÞ can be analyti-
cally solved using elliptic integrals [48–50], the result for
small strain, ϵy ≪ 1, is useful for our aim here [45]. Further
details are found in Supplemental Material [45]. Combining

it with the slip condition for ~F in Eq. (1), we arrive at

μcðϵyÞ ¼
jF xj
F y

≃ 0.445
ffiffiffiffi
ϵy

p
. ð3Þ

This approximate solution matches the exact elliptic func-
tion solution [50] quite well for ϵy ≪ 1 and is in excellent
agreement with the numerical data, as seen in Fig. 2. The
shape reconstructed from the approximate solution is shown
in Fig. 4(a) and describes the configurations observed in our
simulations and experiments (outlined below) quite well.
The boundary between the P and PS states in the phase

diagram (Fig. 2) suggests that a maximum vertical strain
ϵmax
y exists for the P state, which is independent of μ, for
large μ. This observation is corroborated on the basis of the
following simple argument. Once θðLÞ reaches π=2, a P
configuration may be permanently stabilized, because
the contact area between the strip and the surface increases
with any further compressive force. Assuming then that
the shape of the bent strip is close to that of a semicircle
of radius Reff [see Fig. 4(b)] and regarding πReff ≃ L,
we obtain ϵmax

y ≃ ðL − 2ReffÞ=L≃ 1�2=π ≃ 0.363. This
rough argument yields a surprisingly good prediction for
the position of the phase boundary between the P and PS
states in Fig. 2.
Interestingly, our diagram in Fig. 2 suggests the exist-

ence of the triple point at ðϵy;tp; μtpÞ≃ ð0.325; 0.35Þ.
Because the P-CS and P-PS boundary lines meet at this
particular point, it is uniquely determined by finding the
condition of the P-CS transition in the limit of θðLÞ ¼ π=2,
i.e., at the onset of areal contact. This predicts that μtp ≃
0.35 is a universal, geometry-ruled constant, independent
of elastic constants. Therefore, for substrates with μ > μtp,
the slip instability, which can induce an abrupt, often
unpredictable motion of a strip, should always be

suppressed. Such a practical guideline could be useful in
industrial designs of safe and stable operations of slender
structures in contact with surfaces.
Experiments.—To verify our main theoretical findings,

we conducted controlled physical experiments using a
slender elastic strip made of polyvinyl chloride (PVC) of
length L ¼ 150 mm, width 10 mm, and thickness 1 mm.
The Young’s modulus of such a PVC strip is known to be
E ¼ 2.4–4.1 × 109 Pa, and the gravito-bending length Lg
in our experiments is estimated as 240–310 mm, which
exceeds the total length of the strip L. The bottom and side
faces of our strip were polished with sandpaper to add some
surface roughness, and two types of substrates—an alu-
minum plate and a carbon black-filled natural rubber
sheet—were used to vary the frictional coefficients in a
controlled manner. In the experiments, the head of the
z-stage clamping the PVC strip moved downward suffi-
ciently slowly by a distance of 1%–2% of the strip’s length.
At every step, the clamping end was kept fixed for 30 s so
that the strip attained its equilibriumposition, afterwhich the
total tangential and horizontal forces that the strip exerted on
the substrateweremeasured. See our SupplementalMaterial
for full experimental details [45].
In Figs. 3(a) and 3(b), the experimental force vs strain

relations are plotted, together with those predicted from our
simulations. The forces are rescaled in units of EI=L2. We
find an excellent agreement between the simulation and
experiment, from which we could estimate μ≃ 0.225, for
the case in Fig. 3(a) [51]. This particular experimental
point, ðϵy; μÞ ¼ ð0.19; 0.225Þ, as well as data from another
experiment, ðϵy; μÞ ¼ ð0.14; 0.175Þ, are superposed on the
diagram in Fig. 2. The two data points sit exactly on the

(a) (b)

FIG. 3. Rescaled total tangential (fx) and normal (fy) forces
acting on a strip by the substrate, measured in simulations and
experiments and plotted as a function of the vertical strain ϵy. (a) fx
(×) and fy (triangle) from the experiment with an aluminum
surface. fx (square) and fy (diamond) from simulations with
μ ¼ 0.225. (b) fx (×) and fy (triangle) from the experiment with a
rubber surface. fx (square) and fy (diamond) from simulations
with μ ¼ 0.40. Insets in (a) and (b) are the experimental snapshots
for P (εy ¼ 0.10), CS (εy ¼ 0.19), and PS (εy ¼ 0.40).

PRL 118, 178001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

28 APRIL 2017

178001-3



phase boundary between P and CS predicted from simu-
lations and our theoretical analysis.
In the experiment with the aluminum plate [Fig. 3(a)], we

observed the transition to the CS state. In this case, the
tangential and normal forces increase as the strip buckles, and
at the slip transition, these forces experience an abrupt
and discontinuous decrease in strength. In contrast, the PS
state occurs in the experiments with the rubber substrate
[Fig. 3(b)], where the force curves are distinct from those in
the CS case. Across the transition to the PS state, the normal
force starts to increase in magnitude, while the tangential
force begins to decrease continuously. A closer look at this
event reveals that the partial slip involves the onset of the areal
contact between the strip and the substrate. This geometric
transition is continuous and acts to reduce the tangential
tension while increasing the normal force significantly.
Surprisingly, the force response in our simulation is found

independent of μ in the P-PS regime [51]; in Fig. 3(b), we
show the numerical data for μ ¼ 0.4, but the data with other
μð> μtpÞ fit equally well to the experiment. This property
precludes a comparison between the simulation and experi-
ment and, thus, an estimation of the experimental value of μ.
By the nature of contact friction, it is technically difficult to
know values of μ ahead of measurements. Thus, an exper-
imental verification of the predicted triple point is inacces-
sible, as it requires the systematic control of μ as an input
parameter. A more elaborate technique could overcome this
difficulty [52–54], which, however, is beyond the scope of
the present study.
Hysteresis.—In Fig. 4(c), the position of the free end, or

the slip distance, xðs ¼ LÞ ¼ xend, obtained from our
simulations is plotted as a function of ϵy for μ ¼ 0.2
[45]. A discontinuous change in xend=L at the transition

from the P to the CS state appears in Fig. 4(c), whereas xend
changes continuously from zero at the transition from the P
to the PS state (data not shown). Furthermore, Fig. 4(d)
shows that the trajectory of xend in the reverse process differs
considerably from that of the compression process, revealing
a distinct hysteresis in the cyclic process. In particular, the
strip never returns to the P configuration in the reversed
process [45]. We show the phase diagrams generated by the
reverse processes in Fig. 4(e), where no P state exists. Such
protocol-dependent hysteretic behavior, ormultistability, is a
direct consequence of the friction law and has also been
found in granular experiments under shear [55].
Effect of gravity.—We now discuss the effect of gravity

by changing the dimensionless ratio L=Lg while fixing
ðϵy; μÞ ¼ ð0.15; 0.2Þ, so that the strip is in the P configu-
ration for g ¼ 0. AsL=Lg is increased, the strip tends to sag,
while for L=Lg ¼ Oð1Þ, i.e., when the bending is compa-
rable to the gravity, the free end slips easily, because the
effect of gravity acts to increase θðLÞ, and the horizontal
force F x also increases. However, the resulting shape is
distinct from that of the CS state, because the strip interacts
with the substrate by areal contact rather than point contact.
As L=Lg becomes larger [L=Lg ≃ 6 in Fig. 4(f)], the strip
folds and loops back on itself. This folding is analogous to
the planar version of an elastic rope coiling. Actually, using
the same parameter set, we can reproduce a realistic coiling
shape in our three-dimensional simulation of a twist-free
elastic string [45]. We here suggest the following physical
scenario about the initiation of the coiling. First, the free end
slips partially immediately upon contact with the substrate.
Subsequently, the contact length increases monotonically as
the string sags, which significantly reduces the tangential
tension and prevents the string from slipping further. This
effectively confines the sagging string to a localized posi-
tion, eventually leading to the characteristic coiling.
Conclusion.—We investigated the planar slip configura-

tions of an elastic strip pushed onto a frictional rigid
substrate. Combining numerical, analytical, and experi-
mental approaches, we revealed the fundamental aspects of
this problem in the limit of weak gravitational effects and
quantified the relative importance of the system’s geometry,
elasticity, friction, and gravity. The framework presented
here could be applied to a number of biophysical phenom-
ena across different scales, including membrane-bound
actin polymerization in cell motility [56,57], gravity-
guided intrusion of plant roots in soil [8,9], and contact
mechanics of the adhesive hairs in geckos’ toe pads
[27–31]. In all of these examples, bending of thin elastic
objects against rigid or flexible substrates occurs, determin-
ing the overall behavior. This suggests a profound con-
nection between the mechanical processes and the specific
biological functions in those systems. Our formalism needs
to be modified to account for other physical aspects such as
spontaneous curvature, surface chemistry, or active changes
of them. However, the mechanism of the friction-controlled
buckling and slippage is generic and will provide a robust

(a) (b) (c) (d)

(e) (f)

FIG. 4. (a)Comparison of the simulation (square) forμ ¼ 1.0, the
experiment (circle), and the analytic theory (solid line) for P states
with ϵy ¼ 0.10. (b) Critical P configuration (from the simulation)
close to the P-PS boundary, ðϵy; μÞ ¼ ð0.35; 1.0Þ. (c) Rescaled slip
distance xend=L, plotted as a function of ϵy, obtained from the
simulations forμ ¼ 0.2 during the compressionprocess. (d) xend=L,
plotted as a function of ϵy, with μ ¼ 0.2 for compression (squares)
and reverse (circles) processes. The working speed here is twice as
fast as that in (c). (e) Phase diagram for the reverse protocols. The
symbols are the same as ones in Fig. 2. (f) Self-folding forL=Lg ≃ 6
obtained from simulations for ðεy; μÞ ¼ ð0.15; 0.2Þ.
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physical basis for understanding a range of complex
biophysical problems.
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