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We show theoretically and experimentally that the propagation of an acoustic wave in an airflow duct
going through a pair of diaphragms, with equivalent amounts of mean-flow-induced effective gain and loss,
displays all the features of a parity-time (PT ) symmetric system. Using a scattering matrix formalism, we
observe, experimentally, the properties which reflect the PT symmetry of the scattering acoustical system:
the existence of spontaneous symmetry breaking with symmetry-broken pairs of scattering eigenstates
showing amplification and reduction, and the existence of points with unidirectional invisibility.
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Hydrodynamic instability theory shows that flow can
provide energy to small perturbations [1,2]. If, in addition,
these perturbations are compressible, then both acoustic
wave propagation and energy exchange with the flow are
possible, leading, e.g., to the classical whistling phenomena
[3–5]. Thus, in the particular case of flow duct acoustics,
the wave can obviously be convected but it also experiences
gain or loss of acoustic energy due to interactions with the
flow inhomogeneities [6]. Consequently, propagation of
acoustic waves in ducts with flow is a natural non-
Hermitian system where loss and gain are available.
Non-Hermitian systems, where energy conservation is

broken, lead to dynamics governed by evolution equations
with non-normal operators, where surprising phenomena
can appear due to huge non-normality especially close to
exceptional points [7–9]. The particular case of PT sym-
metry, where gain and loss are delicately balanced, has
attracted a lot of attention in the last two decades [10–19]. It
opens the possibility to obtain purely real spectra from non-
Hermitian Hamiltonians, as well as spontaneous symmetry
breaking where real eigenvalues coalesce at an exceptional
point to become a complex conjugate pair. From a scattering
point of view, another type of spontaneous symmetry
breaking for PT -symmetric systems has been theoretically
proposed [20]. It corresponds to the transition of norm-
preserving scattering eigenstates, with unimodular eigen-
values, to symmetry broken pairs of amplified and lossy
scattering eigenstates, with associated pairs of scattering
eigenvalues with inverse moduli [20–24]. It is to be noticed
that this type of symmetry breaking is still waiting to be
observed experimentally [25,26].
Initiated in the domain of quantum mechanics, many

works on PT symmetry have displayed several intriguing
effects such as power oscillation [15,27–29], unidirectional
transparency [30–32], a single-mode laser [33,34], spectral
singularity and a coherent perfect absorber (CPA) laser
[20,35–38] or enhanced sensitivity [39]. A majority of the
studies has been conducted in optics with some attempts in
acoustics where the difficulty to obtain gain has been

recognized. Actually, while losses can be easily introduced
[40,41], the gain for acoustic waves has until now been
obtained owing to active electric amplification [42–45].
In this Letter, we report the experimental realization of a

purely mechanical scattering PT -symmetric system for the
propagation of acoustic waves in a waveguide. The loss and
the gain are produced by two localized scattering units
made of diaphragms, one associated with loss and the other
associated with gain, see Fig. 1(a). In our experiments, the
Mach number of the flow is small enough (Ma≃ 0.01)
such that the effect of convection on the sound wave can be
neglected, preserving the reciprocity property, and the only
effect of the flow is located at the two diaphragms,
characterized by normalized complex impedances C1

and C2. Note that, for a larger Mach number, an advected
term in the Helmholtz equation would lead to a generalized
PT -symmetric system [46] that would be nonreciprocal.
The balance of gain and loss is realized by finely tuning the
flow rate and the geometry of each diaphragm, ensuring

FIG. 1. (a) Sketch of the acoustic PT -symmetric system in an
airflow duct. (b) Corresponding 1D model. (c) Numerical sim-
ulation with Large Eddies Simulation [47] of the flow in the
diaphragm in the presence of an acoustic wave.
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a PT -symmetric system that corresponds to C1 ¼ C�
2 (note

that the real part of the two normalized impedances have to
be equal to get the parity symmetry). Measurements of the
scattering matrix components allow us to demonstrate
unidirectional invisibility and to verify the PT -symmetry
properties. Besides, by changing the distance between the
scatterers, the spontaneous symmetry breaking of the
scattering matrix is observed with the transition from
exact-PT -symmetric phase to PT -broken phase. In the
broken phase, with the experimental gain available, the
scattering eigenstates can be simultaneously fourfold
amplified or reduced, and we show that this effect might
be enhanced by considering a finite periodic collection of
the set of two diaphragms, leading to CPA-laser points.
System description and 1D model.—The description of

the setup is shown in Fig. 1. We consider an acoustic
waveguide where only plane waves can propagate
(kA < 1.841 [48], where A is the tube radius, k ¼ ω=c0
is the wave number, ω is the frequency and c0 is the sound
velocity). The propagation for the acoustic pressure p is
then governed by the 1D Helmholtz equation. Two dia-
phragms are inserted into the tube and are separated with a
distance D [Fig. 1(a)]. As their thicknesses t are small
(kt ≪ 1), the acoustic velocity is conserved while the
pressure jumps between the two sides of the discontinuities.
Thus the propagation is governed by

p00 þ k2p ¼ 0; ð1Þ

with the point scatterer jump conditions at the diaphragms:

½p0�x¼�D=2 ¼ 0;

½p�x¼−D=2 ¼
C1

k
p0; and ½p�x¼D=2 ¼

C2

k
p0;

where prime is the derivative with respect to x. The real part
of the dimensionless parameters C1;2 (that are acoustical
impedances divided by the characteristic impedance and
multiplied by i) is associated with reactive effects while its
imaginary part is linked to the dissipative or gain effects.
We have thus a very simple 1D reciprocal wave model with
two point scatterers at x ¼ �D=2 [Fig. 1(b)]. The effect of
the flow on acoustic propagation is only and entirely
contained in the normalized impedances C1 and C2 that
reflect the mean-flow-induced effective gain and loss.
The system is PT symmetric if and only if the two

normalized impedances are complex conjugated: C2 ¼ C�
1

[49]. With the expð−iωtÞ convention, there is absorption if
ℑðCiÞ > 0 and gain if ℑðCiÞ < 0. The overall behavior of
the acoustical system can be described by the transfer
matrix M

�
pþ
2

p−
2

�
¼

�
M11 M12

M21 M22

��
pþ
1

p−
1

�
ð2Þ

where pþ
1;2 and p−

1;2 are defined in Fig. 1(b). After some
algebra, the components of the overall transmission matrix
are found to be

M11 ¼ −i sinðkDÞC1C2

2
þ eikD

�
1þ iC1

2
þ iC2

2

�
;

M12 ¼ i sinðkDÞC1C2

2
− eikD

iC1

2
− e−ikD

iC2

2
;

M21 ¼ −i sinðkDÞC1C2

2
þ e−ikD

iC1

2
þ eikD

iC2

2
;

M22 ¼ i sinðkDÞC1C2

2
þ e−ikD

�
1 −

iC1

2
−
iC2

2

�
; ð3Þ

where in the case of a PT -symmetric system [21] M11 ¼
M�

22 and ℜ½M12� ¼ ℜ½M21� ¼ 0. The transmission and
reflection coefficients for waves coming from left and
right are defined by tL ¼ detðMÞ=M22, rR ¼ M12=M22,
rL ¼ −M21=M22, tR ¼ 1=M22. Because of reciprocity we
have detðMÞ ¼ 1 and then t ¼ tL ¼ tR. As discussed in
detail in Ref. [21], by permutation of the outgoing waves,
two different scattering matrices with different sets of
eigenvalues can be defined, leading to distinct symmetry
breaking. These two scattering matrices are

Sr ¼
�
rL t

t rR

�
and St ¼

�
t rL
rR t

�
; ð4Þ

where

�
p−
1

pþ
2

�
¼Sr

�
pþ
1

p−
2

�
; and St¼Srσx; ð5Þ

σx is one of the Pauli matrices. The eigenvalues of Sr and
St may have both an exact and broken phases but the
symmetry-breaking points are not the same. In this Letter,
we have chosen to consider both Sr and St and the different
phase transitions they imply. When computing the scatter-
ing eigenvalues, it is useful to recall the PT -symmetry
conservation relations [20,21,46,50] that can be written for
instance as S�

t ¼ S−1
t and lead to

r�LrR ¼ 1 − jtj2; ð6Þ

rLt� þ r�Lt ¼ 0; ð7Þ

rRt� þ r�Rt ¼ 0. ð8Þ

The eigenvalues of the scattering matrix St are given by
λ1;2¼ t� ffiffiffiffiffiffiffiffiffiffi

rRrL
p Þ¼ tð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jtj−2

p
Þ. Then if jtj < 1, the

modulus of the eigenvalues is equal to 1. The case jtj ¼ 1
corresponds to symmetry breaking and jtj > 1 correspond
to the PT -broken phase. The eigenvalues of the other
scattering matrix Sr are given by s1;2¼ðrRþrL�

ffiffiffiffi
Δ

p Þ=2
where Δ ¼ ðrR − rLÞ2 þ 4t2. The broken phase condition
can be written Δ ¼ 0 which leads to rR − rL ¼ �2it. In
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terms of the transmission matrix coefficients, it is equiv-
alent to M12 −M21 ¼ �2i or ℑðC1Þ sinðkDÞ ¼ �1.
Experimental setup.—As described in Fig. 1, the PT -

symmetric system is mounted in a rigid circular duct
between two measurement sections, upstream and down-
stream. Each measurement section consists in a hard walled
steel duct (diameter 30 mm) where two microphones are
mounted. Two acoustic sources on both sides of the system
give two different acoustic states and the four elements of
the scattering matrix (transmission and reflection coeffi-
cient on both directions) for plane waves can be evaluated.
A more detailed description of the measurement technique
can be found in Ref. [51]. The desired gain scatterer is
realized by a finely designed diaphragm submitted to a
steady flow. In this geometry, a shear layer is formed on its
upstream edge and the flow is contracted into a jet with an
area smaller than the hole of the diaphragm, see Fig. 1(c).
This shear layer is very sensitive to any perturbations, like
an oscillation in the velocity due to the acoustic wave. The
shear layer convects and amplifies these perturbations [see
the marked zone in Fig. 1(c)] and a strong coupling
between acoustic and flow occurs when the acoustical
period is of the order of the time taken by the perturbations
to go from the upstream edge of the diaphragm to the exit of
the diaphragm. This corresponds to a Strouhal number of
the order of Sh ¼ ft=Ud ∼ 0.2 [47,51] where f is the
frequency of the acoustic perturbation, t is the thickness of
the diaphragm, and Ud is the mean velocity in the
diaphragm Ud ¼ U0ðA=aÞ2 with U0 the mean velocity
in the duct and a the radius of the diaphragm [Fig. 1(c)].
Eventually, this gain diaphragm has been chosen with an
internal radius a ¼ 10 mm and a thickness t ¼ 5 mm (see
Fig. 1 and the inset in Fig. 2). The other diaphragm, that has
to be lossy, has been chosen with an internal radius a ¼
12 mm and a thickness t ¼ 4.3 mm. Two resistive metallic
tissues have been glued in the diaphragm to produce some
local viscous dissipation along this very fine wire mesh.
In a first step, the scattering coefficients of the two

diaphragms have been measured separately, allowing us to
deduce the values of the normalized impedance C1;2. These
parameters, that have to verify C2 ¼ C�

1 to get a PT -
symmetric system, are plotted on Fig. 2. With the chosen
geometry and flow parameters, it can be observed that there
is a frequency fm where the desired equality (C2 ¼ C�

1) is
achieved. In a second step, the scattering matrix of the
system composed by the two balanced diaphragms is
measured. All the subsequently reported measurements
are made at the frequency fm ¼ 1920 Hz and at the Mach
number Ma ¼ 0.01 for which C2 ¼ C�

1 ¼ 1.83–1.36i,
allowing the system to be PT symmetric. In order to be
able to observe the symmetry breaking, the distance
between the two diaphragms D is varied from 312 mm
to 417 mm by inserting 22 rigid metallic tubes of different
lengths. The minimal distance is chosen to minimize the
hydrodynamical interactions between the two diaphragms.

The maximal D is chosen to have points over half a
wavelength at the measurement frequency with a value of
kD=2π approximately in the range 1.7–2.4.
Results.—The measured transmission and reflection

coefficients are displayed in Fig. 3(a). They are compared
to the theoretical values obtained by using the measured
value of C1 ¼ C�

2 and the 1D modeling of Eqs. (3). The
reflections from left rL (impinging on the loss) and right rR
(impinging on the gain) appear as deeply asymmetric, with
two points with jtj ¼ 1 and rR ¼ 0 or rL ¼ 0. These two
points correspond to the unidirectional transparency phe-
nomenon where the wave passes unreflected with no
amplitude change through the scatterers from one side,
and is strongly reflected from the other side. In order to
verify experimentally the PT symmetry of the system, in
Fig. 3(b), we plot the 2-norm of the matrix StS�

t − I
corresponding to the shift from the PT -symmetry con-
servation relations in Eqs. (6)–(8). For comparison, the
norm of the matrix St

tS�
t − I which represents the deviation

to the acoustic energy conservation is also displayed. It
appears that ∥StS�

t − I∥ is nearly equal to zero in the whole

FIG. 2. Real and imaginary part of the measured impedance
parameters C1 and C2. When the imaginary part of C2 is negative
the diaphragm gets some gain. At the frequency f ¼ fm, gain and
loss are balanced C2 ¼ C�

1.

FIG. 3. (a) Modulus of the scattering coefficients. (b) Norm of
the deviation from acoustic energy conservation property and
from the PT -symmetry property of the scattering matrix.
Symbols correspond to experimental measurements and solid
lines correspond to the 1D theory.
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range of paramaters which unambiguously demonstrates
that the system is PT symmetric; meanwhile ∥St

tS�
t − I∥

can take large values confirming that our system strongly
violates conservation of acoustic energy because the mean
flow can be seen as a supplier of energy for the acoustic
wave. Note that the deviation from the PT -symmetric
conservation relation when kD is around 2.1 can be
modeled by taking into account the viscothermal damping
in the propagation between the two diaphragms [52]. It can
be noticed that for the kD multiple of π, the system is
simultaneously PT symmetric and conservative; it can be
verified [see Eqs. (3)] that in these cases the scattering is
only sensitive to the real part of the normalized impedances
C1 and C2, ignoring thus the effect of gain and loss.
By varying the length of the duct between the two

diaphragms, we can also inspect the spontaneous symmetry
breaking of the scattering matrix of the system [20]. In
Fig. 4, we show the eigenvalues of Sr and St that, since they
are different, lead to different symmetric and broken phases
[21]. We represent also the singular value decomposition
(SVD) of the scattering matrices. These two SVDs are
identical for St and Sr (since St

tS�
t ¼ Sr

tS�
r) and corre-

spond, respectively, to the maximum and minimum out-
going wave for any incoming waves with unit flux; by
definition they are the upper and lower bound of the
modulus of the eigenvalues, and thus must be different
from one, to allow the broken phase. For each choice of
scattering matrix, the experimental measurements, very
close to the theoretical predictions, display clear signatures
of the spontaneous symmetry breaking with different
broken phases for St and Sr. In the symmetric phase the
eigenvalues of the scattering matrices remain on the unit
circle in the complex plane, and the symmetry breaking
corresponds to pairs of non-unimodular scattering eigen-
values, i.e., where the moduli are the inverse of each other
and different from 1. To the best of our knowledge, it is the
first experimental demonstration of the symmetry breaking
of the scattering matrix for PT -symmetric systems as
proposed in Ref. [20].

In the broken phase, a particularly interesting case is the
CPA laser where one eigenvalue of the S matrix goes to
infinity (laser) and the other goes to zero (absorber). From
the experimental results of Fig. 4 we can see that this laser
absorber is not achieved because the maximum eigenvalue
corresponds to a 3.5 amplification. From Eqs. (3), it can be
shown that the CPA-laser condition can be obtained for
larger values of the gain parameter (ℑðC2Þ≃ 2.5) which
cannot be achieved with our current experimental setup.
Nevertheless, in Fig. 5, we show that quasi-CPA laser could
be theoretically achieved by taking a finite periodic array of
N cells of our PT -symmetric system with a distance W
between each cell [Fig. 5(a)]. The use of the 1D model
shows that quasi CPA laser can be obtained by just tuning
the number of cells and the intercell dimensionless fre-
quency kW [N ¼ 25 and kW=2π ¼ 2.1 in Figs. 5(b) and
5(c)]. Figure 5(c) indicates that, by using the interference
Bragg effect in the finite periodic case, it is possible to
approach, very closely, the conditions of the CPA laser.
Conclusion.—Owing to vortex-sound interaction provid-

ing gain and loss in an acoustical system, we have
obtained the experimental signatures of the spontaneous
PT -symmetry breaking in scattering systems. The scatter-
ing matrix eigenvalues can remain on the unit circle in the
complex plane despite the non-Hermiticity and the sym-
metry breaking results in pairs of scattering eigenvalues
with inverse moduli. Unidirectional transparency has also
been observed. It is noteworthy that this mechanical gain
medium is not required to be electronically powered and

FIG. 4. Spontaneous symmetry breaking of the scattering
matrices. (a) Green points: measurements, green line: 1D theory.
(b) Blue points: measurements, blue line: 1D theory. In each plot,
the red lines correspond to the two SVDs of the scattering matrix.
Dashed lines correspond to jtj ¼ 1, i.e., the phase transition
for St.

FIG. 5. (a) Finite periodic case with N cells, green (red) is a
scatterer with loss (gain). (b) Transmission coefficient as a
function of kD and kW for N ¼ 25. White regions correspond
to band gaps. (c) Transmission for kW=2π ¼ 2.1.
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that this PT -symmetric system is very simple to manu-
facture: one tube, two diaphragms, and a small flow inside
the tube. Therefore, this kind of acoustic system can be
seen as a building block to study wave propagation with
more complex PT symmetry (for instance in periodic
systems), and, more generally, we believe it provides an
important connection between hydrodynamic instability
theory, acoustic wave propagation, and non-Hermitian
physics.
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