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In previously identified forms of remote synchronization between two nodes, the intermediate portion of
the network connecting the two nodes is not synchronized with them but generally exhibits some coherent
dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization
(IMRS), inwhich two noncontiguous parts of the network are identically synchronizedwhile the dynamics of
the intermediate part is statistically and information-theoretically incoherent.We identifymirror symmetry in
the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against
dynamical noise as well as against parameter changes. IMRSmay underlie neuronal information processing
and potentially lead to network solutions for encryption key distribution and secure communication.
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Communication, broadly defined as information
exchange between different parts of a system, is a funda-
mental process through which collective dynamics arises in
complex systems. Network synchronization [1], whether it
is complete synchrony [2] or a more general form of
synchronization [3–7], is a primary example of such
dynamics and is thought to be largely driven by node-
to-node communication. However, it has recently been
shown that so-called remote synchronization [8–15] is
possible: two distant nodes (or groups of nodes) can
synchronize even when the intermediate nodes are not
synchronized with them. In this form of synchronization,
the dynamics of different intermediate nodes generally
show some level of coherence with each other, exhibiting,
e.g., generalized synchronization or delay synchronization.
In contrast, in this Letter we consider a dynamical state

of a network that we shall call incoherence-mediated
remote synchronization (IMRS). The N nodes of the
network are organized into three nonempty groups, A,
B, and C, where A is connected with B, and B is connected
with C, but A and C are not directly connected (as
illustrated in Fig. 1). We assume that group B has at least
two nodes, and that the nodes and links within each group
form a connected subnetwork. IMRS is then characterized
by (1) a node from group A (denoted node 1) and a node
from C (denoted node N) that are identically synchronized
(rather than in weaker forms such as phase and generalized
synchronization), and (2) the dynamics of the nodes in the
intermediate group B that are statistically incoherent with
each other. IMRS combines the properties of remote
synchronization mentioned above with those of chimera
states [16–20], which are characterized by the coexistence
of both coherent and incoherent dynamics in different parts
of the network. Here, however, we lift the assumption of
uniform network typically made in studying chimera states,
and instead ask the following fundamental question: under

what conditions can IMRS be observed? In particular, what
types of network structure allow for this behavior? Below
we answer these questions by mapping them to the problem
of cluster synchronization and using a powerful tool for
studying network symmetry based on computational group
theory [7]. Moreover, we show that the incoherent dynam-
ics of group B is typically also incoherent relative to the
dynamics of node 1 (and N). This suggests applications of
IMRS to new forms of secure communication technologies
[21,22] or new schemes for secure generation and distri-
bution of encryption keys [23].
We consider a general class of networks of N coupled

identical dynamical units, whose time evolution is gov-
erned by

_xi ¼ FðxiÞ þ σ
XN
j¼1

AijHðxjÞ; ð1Þ

where xiðtÞ is the state of the ith unit at time t, the equation
_x ¼ FðxÞ describes the dynamics of an isolated node,
σ is the overall coupling strength, A ¼ ðAijÞ1≤i;j≤N is the
coupling matrix representing an undirected unweighted
network topology of the type illustrated in Fig. 1, andHðxÞ

FIG. 1. Remote synchronization between node groups A and C
mediated by incoherence in group B. The colors of the nodes
schematically represent their states, indicating that nodes 1 and N
are identically synchronized, while the dynamics of the nodes in
B are incoherent.
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is a function determining the output signal from a node.
Within this framework, we formulate a set of three
conditions for IMRS to be observed: (i) There exists a
state in which x1ðtÞ ¼ xNðtÞ for ∀t. (ii) The state of
synchronization between nodes 1 and N in condition
(i) is stable. (iii) fxiðtÞg and fxjðtÞg are not synchronized
for all node pairs and are statistically incoherent for most
pairs in B. (Recall that nodes 1 and N are from groups A
and C, respectively.)
Although condition (i) is dynamical in nature, a network-

structural condition implying condition (i) can be expressed
solely in term of the symmetry of the network. The network
symmetry is represented by the (mathematical) group of
node permutations under which the network structure is
invariant (or, equivalently, the group consisting of the
corresponding permutation matrices that commute with
the adjacency matrix A). A cluster of synchronized nodes
can be identified as an orbit of this group, defined as a set of
nodes in which each node can be mapped to any other
nodes in the set by some permutation in the group. From the
invariance of Eq. (1) under these permutations, it follows
that there is a synchronous state in which all nodes in each
orbit (of the group) have identical dynamics, forming K
clusters: fskðtÞg1≤k≤K , where xiðtÞ ¼ skðtÞ for all t if node i
belongs to cluster Ck. Note that skðtÞ can be different for
different k as long as they satisfy the equations obtained by
substituting xiðtÞ ¼ skðtÞ into Eq. (1). Formulating IMRS
as such a state, we see that condition (i) above is equivalent
to the existence of an orbit that intersects with both A and
C. We denote this cluster byC1, from which we choose one
node in A as node 1, and one node in C as node N.
The synchronization stability condition (ii) is verified for

a given network structure using the method in Ref. [7]. We
first identify clustersCk in the network using computational
group theory. We then compute λC1

, the maximum trans-
verse Lyapunov exponent associated with the modes of
perturbation that destroys the synchronization of cluster C1

(some of which destroy the synchronization between nodes
1 andN). Thus, condition (ii) can be formulated as λC1

< 0.
The statistical coherence in condition (iii) is measured by

cross correlation and mutual information, accounting for
possible coherencewith a time lagΔt. We useCi;j to denote
the absolute value of the Pearson correlation coefficient
between xiðtÞ and xjðtþ ΔtÞ over a range of t, maximized
over a range of Δt [24]. Likewise, we use
Ii;j to denote the mutual information between xiðtÞ and
xjðtþ ΔtÞ over t, maximized over Δt [24,25]. Thus,
condition (iii) would be satisfied if Ci;j and Ii;j are both
small for most pairs i and j in B, and Ci;j ≠ 1 for ∀i; j
(indicating no identical synchronization). We choose cha-
otic node dynamics for higher likelihood of having inco-
herence in B, and we further ensure that the dynamics of
skðtÞ is chaotic. This condition is equivalent to λ > 0,
where λ is the maximum Lyapunov exponent parallel to the

synchronization manifold (associated with perturbations
that do not destroy synchronization of any cluster Ck).
Condition (iii) is also intimately related to network

symmetry; it requires that each cluster in B contain only
one node. What characterizes the structure of networks that
satisfy both this requirement and condition (i)? Based on
our numerical verification for N ≤ 8 nodes, we conjecture
that any such network has a mirror symmetry (possibly
after regrouping the nodes): groups A and C are “mirror
images” of each other (although no symmetries are needed
inside group B), as illustrated in Fig. 1. More precisely, the
network structure is invariant under a node permutation that
serves the role of a “reflection” and maps each node in A to
a unique node in C, but does not move any nodes in B. In
particular, this implies that each node in B that connects to
Amust connect toC in exactly the sameway. It also implies
that all nontrivial clusters (i.e., those of size> 1), which we
denoteC1;…;CK0 (after appropriate reindexing), span both
A and C in a symmetrical way (involving the same number
of nodes from each group) and collectively cover all nodes
in A and C. This means that the corresponding network
dynamics is also mirror symmetric: each node in A is
identically synchronized with its counterpart in C (possibly
showing different dynamics for different node pairs). In
particular, we have identical synchronization between
nodes 1 and N (both belonging to C1). Moreover, the
clusters C1;…;CK0 are all intertwined with each other; i.e.,
synchronization of these clusters must be either all stable or
all unstable. A group-theoretical origin of this behavior is
argued to be the property that any network-invariant
permutation that rearranges the nodes in one cluster must
also rearrange the nodes in each of the other clusters [7],
which we conjecture is guaranteed by the mirror symmetry.
Conversely, if a network with the three-group structure of
Fig. 1 has a mirror symmetry, then nodes 1 and N (in A
and C, respectively) are guaranteed to be part of a
synchronized cluster. Note that the mirror symmetry alone
does not impose any condition on the link configuration
within B, and hence the clusters in B can, in principle, be of
size > 1 [which would violate condition (iii)].
To systematically search for IMRS, we propose the

following general recipe for designing a system: (1) con-
struct a network structure that has a mirror symmetry and
satisfies the size-one cluster requirement in B; (2) select
chaotic node dynamics; (3) find system parameters for
which the synchronization between nodes 1 and N is stable
(i.e., λC1

< 0) and the dynamics of skðtÞ is chaotic (i.e.,
λ > 0); and (4) verify incoherence in B (i.e., small Ci;j and
Ii;j). As an example algorithm for generating networks for
step 1 above, we use the following procedure (for which we
provide software; see Supplemental Material [26]). Given
nA, nB, and nC (¼ nA) nodes in A, B, and C, respectively,
we first connect each pair of nodes in B with probability p.
Next, we connect node 1 to all the other nodes in A and
node N to all the other nodes in C. The nodes in A other
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than node 1 are then paired up with the nodes in C other
than node N. Finally, for each of these node pairs, we
choose n0B nodes randomly from B and connect each of
these nodes to the node pair. An example network con-
structed by this procedure is shown in Fig. 2(a). The
probability of having a cluster of size > 1 in B can be kept
small by making the size of B large enough. Here we
generate networks with nB ≥ 10 and use only those with no
cluster of size > 1 in B.
As an example dynamics for the network leading to

IMRS, we use coupled maps that model the electro-optic
experimental system [18], although we note that continu-
ous-time systems also exhibit IMRS (see Supplemental
Material [26], Sec. S1). The system dynamics is governed
by

θiðtþ 1Þ ¼
�
βI(θiðtÞ)þ σ

XN
j¼1

AijI(θjðtÞ)þ δ

�
mod 2π;

ð2Þ
where θiðtÞ is the phase shift in time step t for the ith
component of the spatial light modulator array used in the
experiment, β is the strength of self-feedback coupling for
the array components, and the offset δ is introduced to
suppress the trivial solution, θiðtÞ≡ 0. We set δ ¼ 0.525
for all computations for this system. The intensity of
light is related to the phase shift θ through the nonlinear

function IðθÞ ≔ ½1 − cosðθÞ�=2. The dynamics of an iso-
lated oscillator has a globally stable fixed point for small β,
which, through a sequence of period-doubling bifurcations,
becomes chaotic for larger values of β [see Fig. 3(a)].
As shown in Fig. 3(b), we find that networks generated

by the procedure described above can achieve λC1
< 0 (i.e.,

stable synchronizationbetweennodes 1 andN)whenβ andσ
are both relatively small. These networks all have a mirror
symmetry by construction, and they satisfy both conditions
(i) and (ii). Figure 3(c) shows that, even when we start with
oscillators that are not chaotic in isolation [β ≲ 4, see
Fig. 3(a)], the dynamics of the clusters skðtÞ becomes
chaotic (i.e., λ > 0) as the coupling strength σ is increased.
We thus see that there is a wide range of parameters β and σ
for which the network realizes stable chaotic synchroniza-
tion. To check condition (iii), we compute Ci;j and Ii;j over
time steps 104 ≤ t ≤ 4 × 104 and timedelay−50 ≤ Δt ≤ 50
for β ¼ 1.5 and σ ¼ 1.5 [black crosses in Figs. 3(b) and
3(c)]. The results, shown in Figs. 2(b) and 2(c), verify that
condition (iii) is indeed satisfied. The corresponding system
dynamics is illustrated by the time plots in Figs. 2(d)–2(f).
Thus, the network exhibits IMRS for these specific param-
eters. Moreover, Figs. 2(b) and 2(c) clearly show that the
dynamics of the nodes in B is also incoherent relative to
nodes 1 and N. While Eq. (2) is a discrete-time analog of
Eq. (1), we expect IMRS to be observed for a range of
different node dynamics, including both discrete-time and
continuous-time dynamics, as well as for many mirror-
symmetric network topologies not necessarily generated by
the procedure described above.
How does IMRS depend on system parameters? To

answer this question, we study the distribution of Ci;j
(Fig. 4) and Ii;j (Fig. S2 in Sec. S2 of Supplemental
Material [26]) over all i ≠ j ∈ B as functions of parameters
nB, n0B, nA, β, and σ. We verify λC1

< 0 for the entire range
of parameter values over which the curves are drawn in

A

B

C

(a) Network structure

1 N = 42
10

20

FIG. 2. Network exhibiting IMRS. (a) Mirror-symmetric struc-
ture of the network, generated with nA ¼ 6, nB ¼ 30, n0B ¼ 2,
and p ¼ 0.8. (b) Pairwise cross correlation Ci;j. (c) Pairwise
mutual information Ii;j. (d)–(f) Phase variable θi as a function
of t. In (d), only the blue curve is clearly visible because the two
curves overlap. The calculations in (b)–(f) are based on iterating
Eq. (2) with β ¼ 1.5 and σ ¼ 1.5.
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FIG. 3. Characterizing the network dynamics. (a) Lyapunov
exponent λiso of the isolated node dynamics as a function of
self-feedback strength β. (b) Synchronization stability λC1

of
cluster C1 (and thus between nodes 1 and N) as a function of β
and coupling strength σ. (c) Lyapunov exponent λ measuring the
instability parallel to the synchronization manifold as a function
of β and σ. The exponents λC1

and λ are averaged over ten
network realizations and ten initial conditions.
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Fig. 4 (see Supplemental Material [26], Sec. S2 for more
details, including parameter dependence of λC1

). As indi-
cated by their 25th and 75th percentiles (dashed curves), the
cross correlation and mutual information remain low for
most node pairs in B for a range of system parameters, with
the exception of cases with small σ. The medians of these
coherence measures are mostly monotonically decreasing
functions of σ up to the largest value of σ (≈1.7) for which
λC1

< 0 [Figs. 4(e) and S2(e)]. We have Ci;j ¼ 1 at σ ¼ 0,
indicating that all nodes in B are perfectly correlated in that
case, simply because the isolated oscillators all converge to
a common stable fixed point for β ¼ 1.5. The median cross
correlation and median mutual information appear to be
slightly decreasing functions of nB and n0B, while they seem
to be approximately constant as functions of nA (both for
σ ¼ 1.5 and σ ¼ 1) and of β. Note, however, that the
synchronization stability does depend on nA: we observe
that nodes 1 and N cannot synchronize stably for nA > 6
for σ ¼ 1.5 [green curves ending at nA ¼ 6 in Figs. 4(c)
and S2(c)] but remain stably synchronized up to nA ¼ 15
for σ ¼ 1 [blue curves in Figs. 4(c) and S2(c)]. The loss of
synchronization stability for sufficiently large nA is likely
due to incoherent dynamics of the other nodes in groups A
and C (see Supplemental Material [26], Sec. S3). Since
these nodes are the only ones that directly influence the
dynamics of nodes 1 and N (and thus their synchronization
stability), the larger the number of these dynamically
incoherent nodes (i.e., the larger nA), the more difficult
for nodes 1 and N to stably synchronize. Overall, we find
that IMRS is observed for a wide range of structural and
dynamical parameters of the system (see Supplemental
Material [26], Sec. S4 for similar robustness observed for a
continuous-time system).
We also find that the low levels of coherence between

node 1 (or N) and the nodes in B are maintained over a
range of parameter values, following dependence patterns
similar to those of the coherence levels within B (see
Supplemental Material [26], Sec. S5). Low coherence
between periphery and intermediate nodes has also been
observed in certain cases of remote synchronization [10,11]
[but with pairs of identically synchronized oscillators in the
intermediate part of the network, which is not compatible
with the IMRS condition (iii)].

A key aspect of IMRS lies in its behavior against noise.
While the synchronization of nodes 1 and N is robust
against independent noise added to the dynamics in A and
C only up to a certain level (which is expected), IMRS is
completely insensitive to noise in B, even when the noise
level is very high (see Supplemental Material [26],
Sec. S6). This characteristic robustness of IMRS stems
from the mirror symmetry and is also associated with the
dynamical incoherence in condition (iii). In contrast,
(remote) synchronization of nodes 1 and N can be
extremely sensitive to noise in B when some nodes in B
are identically synchronized. This is demonstrated using
the network topology considered in Ref. [10] (see
Supplemental Material [26], Sec. S7).
Our demonstration of IMRS challenges the notion that

paths of communication between nodes that are exchanging
information should be somehow observable. A particularly
striking feature of IMRS we studied here is that the
coupling between A and B, as well as B and C, is
bidirectional. This allows information to be transferred
from A to C through B, despite the scrambling of that
information by the incoherent chaotic dynamics of B,
which reduces the amount of shared information in B to
a level that is too low for eavesdroppers (as measured by
mutual information). This feature fundamentally sets IMRS
apart from a master-slave type of chaos synchronization
[27], in which the dynamics ofB influences that ofA andC,
but not vice versa, thus prohibiting communication between
nodes 1 andN. Similar master-slave synchronization can be
observed even whenB is replaced by noise, if the average of
the noise is nonzero and its effect is equivalent to parameter
change that drives the dynamics into synchrony [28].
A defining characteristic of IMRSwe demonstrated is the

dynamical incoherence within group B, which is allowed in
the presence of the mirror symmetry we established as a
general condition for observing IMRS.Whilewe focused on
undirected networks here, an analog ofmirror symmetry can
be formulated for directed networks using the notion of input
equivalence [4]. Since zero-lag synchronization of distant
areas of the brain has been experimentally observed [29–31],
our results suggest the intriguing possibility that a mirror
symmetry is hidden deep inside the synaptic connectivity
structure. We hope that our discovery will spark the interest
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02 03 0410 5 01 511 2 15105 0 10 1 2
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(a) (e)(d)(b) (c)

FIG. 4. Influence of system parameters on IMRS. (a)–(e) The distribution of the correlation Ci;j between pairs of nodes in B is shown
as a function of parameters nB, n0B, nA, β, and σ. Each panel shows the median (solid curve with dots), the range between the minimum
and maximum (shaded region), and the 25th and 75th percentiles (dashed curves). These quantities are all averaged over ten network
realizations and ten initial conditions. Unless noted otherwise, all parameters are set to the values used in Fig. 2 (indicated by red dots).
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of many researchers and leads to further discoveries of
fundamental connections between hidden network sym-
metry and emergent collective behavior in complex systems.
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