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A giant thermal magnetoresistance is predicted for the electromagnetic transport of heat in magneto-
optical plasmonic structures. In chains of InSb-Ag nanoparticles at room temperature, we find that the
resistance can be increased by almost a factor of 2 with magnetic fields of 2 T. We show that this important
change results from the strong spectral dependence of localized surface waves on the magnitude of the
magnetic field.
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The ability to control electromagnetic energy in deep
subwavelength volumes with surface plasmons or phonon
polaritons has attracted much attention in nanoscale science
during the past decade. In the region where localized
surface waves exist, the electromagnetic field is coupled
to atoms and charges oscillations. Such vibrations are
responsible for a strong dissipation by the Joule effect
and the dissipated heat spread out through the structure by
both radiation and conduction. This emerging branch of
plasmonics is called thermoplasmonics [1–6]. Original
mechanisms for the heat transport have been described
in these media such as anomalous regimes [7] in plasmonic
networks due to long-range interactions as well as ampli-
fication phenomena for photon heat tunneling [8] due to
cooperative effects. Besides these fundamental results, the
control of temperature fields at subwavelength scales has
found several important applications in medical therapy
[9–11], heat-assisted magnetic recording [12,13], chemical
catalysis [14], thermotronics [15–17], thermal lithography
[18], and thermophotovoltaic energy conversion [19,20].
Today, the dynamic control of heat transport is undoubtedly
a new frontier in thermoplasmonics. A step forward in this
direction has been recently taken with the discovery of a
photon thermal Hall effect [21] in magneto-optical nano-
particle lattices in the presence of an external magnetic
field. This thermomagnetic effect consists in the appear-
ance of a radiative heat flux transversally to the direction of
a primary temperature gradient because of a local symmetry
breaking induced by the magnetic field. Recently, other
thermal magneto-optical effects have been highlighted in
ferromagnetic–normal-metallic multilayers [22–24] due to
the strong dependence of the electronic thermal conduc-
tivity with respect to an external magnetic field.
In the present Letter, we predict another thermomagnetic

effect: a magnetoresistance for the heat flux carried by
thermal photons. In the ordinary magnetoresistance [25],
the change in a material’s resistivity with the application of
a magnetic field is relatively small, and only differences of

a few percent have been observed at room temperature. On
the other hand, giant magnetoresistance (GMR) effects of
up to 50% have been reported [26] at a low temperature in
magnetic-nonmagnetic multilayer structures. Here we
anticipate a thermal analog of this effect at room temper-
ature in magneto-optical lattices with reasonably small
magnetic fields.
In the matter at hand, we need to characterize the heat

flux exchanged by thermal radiation in magneto-optical
many-body systems out of thermal equilibrium. Lorentz
reciprocity is broken in these systems, so that permanent
heat currents can exist even at thermal equilibrium [27]. If
we consider a set of N subwavelength media at arbitrary
temperatures Ti immersed in a thermal bath at a different
temperature, such media can exchange electromagnetic
energy between them as well as with the bath. The
associated heat transfer can be described using a
Landauer-like formalism [28–31], from which the net heat
flux exchanged between two nonreciprocal media i and j
can be written under the general form

φijðHÞ ¼
Z

∞

0

dω
2π

½Θðω; TiÞT i;jðω;HÞ

− Θðω; TjÞT j;iðω;HÞ�; ð1Þ

where Θðω; TÞ ¼ ℏω=½eℏω=kBT − 1� is the mean energy of a
harmonic oscillator in thermal equilibrium at temperature T
and T i;jðω;HÞ denotes the transmission coefficients at the
frequency ω under the action of a magnetic field H. These
transmission coefficients are defined as [29]

T i;jðω;HÞ ¼ 2ImTr½Aij
¯̄χjC

†
ij�; ð2Þ

where the susceptibility tensor ¯̄χj and the matrices Aij and
Cij are given, respectively, by [29]
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¯̄χjðHÞ ¼ ¯̄αjðHÞ − i
k3

6π
¯̄αjðHÞ ¯̄α†

jðHÞ; ð3Þ

Aij ¼ ½1 − k2α̂B�−1ij ; ð4Þ

Cij ¼ k2HikAkj: ð5Þ

Here Bij ¼ ð1 − δijÞG0
ij and Hlm ¼ iðk=6πÞδlm1þ Blm,

while ¯̄αj is the polarizability tensor of the jth
object, α̂ ¼ diagð ¯̄α1;…; ¯̄αNÞ is the polarizability matrix,
and G0

ij ¼ ðexpðikrijÞ=4πrijÞf½1þ ðikrij − 1=k2r2ijÞ�1þ
ð3 − 3ikrij − k2r2ij=k

2r2ijÞr̂ij ⊗ r̂ijg is the free space
Green tensor (r̂ij ≡ rij=rij, rij being the vector linking
the center of dipoles i and j, rij ¼ jrijj, and 1 stands for the
unit dyadic tensor).
When the system is at equilibrium at temperature, say,

Tj, it follows from the general expression (1) that the media
i and j still exchange an energy flux

φeq
ij ðHÞ¼

Z
∞

0

dω
2π

Θðω;TjÞ½T i;jðω;HÞ−T j;iðω;HÞ�: ð6Þ

This flux corresponds to the permanent current recently
highlighted by Zhu and Fan [27] in a system of three
magneto-optical particles, which is a function of the
asymmetry degree in the system. If the transmission
coefficients T i;j and T j;i are not equal in nonreciprocal
systems, they are nonetheless not independent one from the
other. Indeed, when we consider a system at equilibrium at
temperature T, the net flux received by each medium must
vanish, and, therefore, the relation

X
j

φijðHÞ

¼
Z

∞

0

dω
2π

Θðω; TÞ
X
j

½T i;jðω;HÞ − T j;iðω;HÞ� ¼ 0

ð7Þ

holds for any i ¼ 1; N. Since this flux vanishes whatever
the equilibrium temperature is, the general relation

X
j

½T i;jðω;HÞ − T j;iðω;HÞ� ¼ 0 ð8Þ

must be satisfied between the transmission coefficients.
This condition is remarkable, because it assures that the
total flux received by each medium in the many-body
system vanishes at equilibrium despite the presence of an
equilibrium flux. As a consequence, a body in the system
cannot cool down or heat up under these conditions, and the
second law of thermodynamics is not violated by the
occurrence of the permanent flux. In the particular case
of two-body systems, this relation immediately leads to

T 1;2ðω;HÞ ¼ T 2;1ðω;HÞ; ð9Þ

so that the energy transmission coefficients become sym-
metric regardless of the nonreciprocity. Notice that, for
linear chains, our numerical simulations have shown that
T i;j ≈ T j;i, although a proof of the strict reciprocity for
these geometrical configurations is still lacking.
Furthermore, from expressions (1) and (6), one can

deduce the nonequilibrium contribution to the total heat
flux

φneq
ij ðHÞ¼

Z
∞

0

dω
2π

½Θðω;TiÞ−Θðω;TjÞ�T i;jðω;HÞ; ð10Þ

which depends on the difference of distribution functions of
the media. In the configurations analyzed below, this con-
tribution strongly dominates over the equilibrium one [32].
Moreover, this expression of φneq

ij allows us to define a
thermal conductance GijðHÞ ¼ limjΔTj→0φ

neq
ij ðHÞ=jΔTj in

nonreciprocal systems which is consistent with the classical
definition in reciprocal systems, where ΔT ¼ Ti − Tj. The
inverse of this conductance is the thermal magnetoresistance

RijðHÞ ¼
�Z

∞

0

dω
2π

∂Θ
∂T T i;jðω;HÞ

�
−1
: ð11Þ

To investigate the behavior of the thermal magneto-
resistance in a concrete situation, we consider a linear chain
of N magneto-optical nanoparticles immersed in an exter-
nal magnetic field of strength H orthogonal to the axis of
the chain (the anisotropic magnetoresistance is not con-
sidered here). The resistance of the chain is then given by
RðHÞ≡ R1NðHÞ. Moreover, to quantify the influence of
the magnetic field, we compute the ratio Rð0Þ=RðHÞ of the
resistance without a field to its value at the given field. In
particular, we first consider linear chains of n-doped
InSb nanoparticles with different lengths. Under these
conditions, the permittivity tensor of the particles takes
the form [33]

¯̄ε ¼

0
B@

ε1 −iε2 0

iε2 ε1 0

0 0 ε3

1
CA; ð12Þ

with

ε1ðHÞ ¼ ε∞

�
1þ ω2

L − ω2
T

ω2
T − ω2 − iΓω

þ ω2
pðωþ iγÞ

ω½ω2
c − ðωþ iγÞ2�

�
;

ε2ðHÞ ¼ ε∞ω
2
pωc

ω½ðωþ iγÞ2 − ω2
c�
;

ε3 ¼ ε∞

�
1þ ω2

L − ω2
T

ω2
T − ω2 − iΓω

−
ω2
p

ωðωþ iγÞ
�
: ð13Þ
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Here ε∞ ¼ 15.7 is the infinite-frequency dielectric con-
stant, ωL ¼ 3.62 × 1013 rad s−1 is the longitudinal optical
phonon frequency, ωT ¼ 3.39 × 1013 rads−1 is the trans-
verse optical phonon frequency, ωp ¼ ðne2=m�ε0ε∞Þ1=2 is
the plasma frequency of free carriers of density
n ¼ 1.68 × 1017 cm−3, charge e, and effective mass
m� ¼ 1.99 × 10−32 kg, ε0 is the vacuum permittivity,
Γ ¼ 5.65 × 1011 rad s−1 is the phonon damping constant,
γ ¼ 3.39 × 1012 rad s−1 is the free carrier damping con-
stant, and ωc ¼ eH=m� is the cyclotron frequency. Thus,
the polarizability tensor for a spherical particle can be
described, including the radiative corrections, by the
following anisotropic polarizability [34]:

¯̄αiðωÞ ¼
�
¯̄1 − i

k3

6π
¯̄α0i

�−1
¯̄α0i; ð14Þ

where ¯̄α0i denotes the quasistatic polarizability of the ith
particle and k ¼ ω=c, c being the speed of light in a
vacuum. For spheres made with magneto-optical materials
and which are embedded inside an isotropic host of
permittivity εh, this quasistatic polarizability reads

¯̄α0iðωÞ ¼ 4πr3ð ¯̄ε − εh
¯̄1Þð ¯̄εþ 2εh

¯̄1Þ−1; ð15Þ

where r is the radius of the particles. Examples of thermal
magnetoresistance ratio Rð0Þ=RðHÞ at T ¼ 300 K for these
particles are shown in Fig. 1(a) for different chain lengths.
In Fig. 1(b), we also show for this case the net flux φ1NðHÞ
exchanged between the first and the Nth particle when a
temperature difference ΔT ¼ 50 K is applied around an
equilibrium temperature T ¼ 300 K. We observe that the
resistance of the chain significantly increases with a
magnetic field applied perpendicularly to the chain axis.
After an abrupt change, the resistance reaches approxi-
mately a constant value. For very large field strengths (not
shown), the resistance can again undergo considerable
changes. We emphasize that the result presented in
Fig. 1(a) indicates a drastic variation of thermal magneto-
resistance over a relatively small range of field strength.
Whatever the length of the chain is, we observe that the
resistance increment is about 70% with a magnetic field of
approximately 2 T and is larger for more intense fields.
Furthermore, Fig. 2 describes how the thermal magneto-
resistance evolves when the separation distance d between
the particles is modified from the regime of near-field
interaction (d ¼ 2r) to the regime of far-field interaction
(d ¼ 50r). In both cases, the resistance increases for weak
strengths, somewhat larger than H ¼ 0. On the other hand,
as the magnetic field strength increases, the resistance
decreases in dense chains, while it increases in dilute ones
before reaching a plateau.

FIG. 1. (a) Thermal magnetoresistance of InSb linear nano-
particle chains of different lengths at T ¼ 300 K as a function of
the strength of an external magnetic field H orthogonal to the
chain. The positive sign for the strength of the field corresponds
to a field pointing outwards, and the negative sign to a field
in the opposite direction. The radius of the nanoparticles is
r ¼ 100 nm, and the separation distance between two adjacent
particles is d ¼ 2r (edge to edge). (b) Net energy flux exchanged
along the chain between the first and the last particle as a function
of the external magnetic field (orthogonal to the chain). A
temperature difference ΔT ¼ 50 K is applied at T ¼ 300 K.

FIG. 2. Thermal magnetoresistance of InSb linear nanoparticle
chains with respect to the strength of an external magnetic fieldH at
T¼ 300K.The radius andnumber ofnanoparticles are r ¼ 100 nm
and N ¼ 5, respectively, for separation distances d ¼ 2r (in the
near field) and d ¼ 50r (corresponding to the far field).
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To give insight into the physical mechanism behind this
behavior, we show in Fig. 3 the energy transmission
coefficients along InSb nanoparticle chains in the fre-
quency-magnetic field domain ðω; HÞ. It can be seen that
mainly three branches play a relevant role in the heat
transfer along the chain. One of these branches is inde-
pendent of the magnetic field, whereas the other two exhibit
a marked dependence on the strength of the field. A
comparison of these plots with a mapping of the particle
resonances in the same domain demonstrates that the
channels for heat exchanges along the chain are the

associated localized resonances [32]. These resonances
are no more and no less than the localized plasmons. As
shown in Fig. 3(c), these channels strongly depend on the
strength of the magnetic field. In addition, since Wien’s
frequency is shifted toward a higher or lower frequency
when the temperature is changed, these magnetic-
dependent channels participate more or less to the heat
transfer. The comparison of Figs. 3(a) and 3(b) with
Fig. 3(c) reveals that the large variations of thermal
magnetoresistance originate from the spectral shift of reso-
nant modes with respect to the field strength. Finally, we
point out that the magnetoresistive effect can be larger in
more complex structures. As can be seen in Fig. 4, in binary
InSb-Ag nanoparticle chains the increment in the resistance
is even more noticeable. A variation of resistance of about
30% is observed at 500 mT. This sensitivity is of the same
order of magnitude as the one highlighted in ferromagnetic–
normal-metal multilayers [22]. Optimized chains allow us to
envision a much larger sensitivity. However, when the
particles are embedded in a host solid, heat conduction
superimposes to radiation. By decomposing the full
thermal conductanceGðHÞ into a conductanceGc associated
to the phononic and electric conductionwhich is independent
on the magnetic field and the radiative conductance GrðHÞ
which is magnetodependent, it is easy to see that
GðHÞ=Gð0Þ ¼ Rð0Þ=RðHÞ ≈ 1þ Rc=RrðHÞ. But, typi-
cally in the near-field regime Rc ∼ yRr with y < 0.1 [31].
Therefore, a variation of 50% of the radiative resistance with
respect toH leads to a change of the full resistance of only a
few percent.
Despite this, this giant thermal magnetoresistance

(GTMR) effect could find some practical applications. In
the linear regime, the heat flux between two elements inside
a nanoparticle network takes the general form

φ ≈ ðαH þ βÞΔT: ð16Þ

FIG. 4. Thermal magnetoresistance of InSb-Ag binary chains
of N ¼ 5 particles at T ¼ 300 K with different radii. The
separation distance (edge to edge) is the sum of the two radii.

FIG. 3. (a),(b) Energy transmission coefficients T 1;N in the
ðω; HÞ plane for a linear chain of N ¼ 5 InSb particles of
radius r ¼ 100 nm. The separation distance (edge to edge)
between the particles is d ¼ 2r in (a) and d ¼ 50r in (b).
(c) Location of resonances of the InSb particles shown in the
ðω; HÞ plane. The plot shows the function fðω; HÞ ¼
ln fjðε3 þ 2εhÞ½ðε1 þ 2εhÞ2 − ε22�j−1g.
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Therefore, by locally measuring the temperature difference
ΔT at the given field H, the heat flux propagating in the
network can be locally evaluated. Reversely, the GTMR
can be exploited to make a purely thermal measurement of
the magnetic field intensity. In addition, the GTMR could
be implemented in a strain gauge to make local measure-
ments of the thermal expansion by identifying the affine
parameters in expression (16) for a given magnetic field.
Finally, it offers a way to make a direct evaluation of the
nonreciprocity degree of a system.
In summary, we have shown the existence of a GTMR in

simple InSb and binary InSb-Ag nanoparticle chains. The
resistance is increased by almost a factor of 2 when a
magnetic field of few Teslas is applied orthogonally to the
chains. This GTMR results from a strong spectral shift of
localized surface waves supported by the particles under the
action of a magnetic field. This effect is promising for
practical applications, especially in the field of thermal
management at the nanoscale as well as for magnetic
sensing with temperature or heat flux measurements. We
have limited this study to simple InSb or InSb-Ag chains
where the GTMR requires the application of a relatively
strong magnetic field. But a giant thermal magnetoresist-
ance could be observable with weaker fields using different
materials or combining different magneto-optical and non-
magnetic materials.
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