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We discuss the properties of non-Abelian gauge theories formulated on manifolds with compactified
dimensions and in the presence of fermionic fields coupled to magnetic backgrounds. We show that
different phases may emerge, corresponding to different realizations of center symmetry and translational
invariance, depending on the compactification radius and on the magnitude of the magnetic field. Our
discussion then focuses on the case of an SUð3Þ gauge theory in four dimensions with fermions fields in the
fundamental representation, for which we provide some exploratory numerical lattice results.
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In this study, we investigate a class of phenomena taking
place in SUðNÞ gauge theories with dynamical fermions,
when one of the space-time dimensions is compactified in
the presence of an electromagnetic background coupled to
the fermions. Such phenomena result from the coupling of
the gauge field holonomy to the background, through
fermion loops, leading to an entanglement between
center and translational symmetries, which manifests itself
through the presence of different phases and phase
transitions.
Center symmetry plays a fundamental role in determin-

ing the phase diagram of pure SUðNÞ gauge theories [1].
Their action is symmetric under gauge transformations
which are periodic in the compactified direction, apart from
a constant element belonging to the center of the gauge
group. In the lattice formulation, that can be rephrased in
terms of multiplication of all gauge links pointing in the
compactified direction and taken at a given slice orthogonal
to it by a center element ZN ≡ fei2kπ=N; k ¼ 0;…; N − 1g.
This symmetry can be exact or spontaneously broken; the
trace of the holonomy along the compactified direction,
L≡ Tr expði H dxμgAμÞ (Wilson line or Polyakov loop),
which gets multiplied by ZN, is a possible order parameter.
Its expectation value hLi becomes nonzero and propor-
tional to a center element for small enough compactifica-
tion radii, due to the appearance of N degenerate vacua in
the holonomy effective potential. For a thermal compacti-
fication, the corresponding phase transition describes
deconfinement [2].
The presence of matter fields changes the picture

substantially. The covariant derivative in the fermion action
introduces a coupling to the holonomy around the com-
pactified direction, which breaks center symmetry explic-
itly. For fermions in the fundamental representation and
thermal boundary conditions (b.c.), this coupling favors a
real Wilson line, so that the spontaneous breaking dis-
appears. (For periodic b.c., positive real values are instead

disfavored, and a spontaneous breaking of the residual
center symmetry is still possible [3–5].) A more interesting
phenomenology takes place when fermions are coupled to
an additional Uð1Þ background; i.e., their covariant deriva-
tive is

Dν ¼ ∂ν þ igAa
νTa þ iqaν; ð1Þ

where Ta are the SUðNÞ generators and q is the coupling to
the external Uð1Þ field aμ. Awell-known example is that of
an imaginary chemical potential, μ ¼ iμI in finite temper-
ature QCD. In this case, qaν ¼ μIδν0, where 0 is the
Euclidean temporal direction, and the full holonomy enter-
ing the fermion determinant is

Tr exp

�I
dxμiðgAμ þ qaμÞ

�
¼ LeiμI=T : ð2Þ

It is therefore L expðiμI=TÞ which tends to be oriented
along the real direction; i.e., in this case fermions tend to
align L along expð−iμI=TÞ, like an external field whose
direction in the complex plane is fixed by μI=T. This is
exemplified in Fig. 1 for the SUð3Þ case. In the high-T
phase, where the pure gauge contribution to the holonomy
effective potential would tend to align it along a center

FIG. 1. Dynamical fermions break center symmetry like an
external field in a spin system, e.g., a three-state Potts model for
SUð3Þ. For standard thermal b.c., the external field points along
the real axis (left), while the introduction of an imaginary
chemical potential rotates it (right).
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element, that results in first-order phase transitions as μI=T
crosses π=N or odd multiples of it, which are known as
Roberge-Weiss transitions [6].
We are going to explore what happens when the Uð1Þ

background is nonuniform. To fix ideas, we consider the
case in which a spatial dimension gets compactified in the
presence of a background magnetic field; notice however
that the case of thermal b.c. in the compactified dimension
is equivalent, since the antiperiodic b.c. for fermions imply
just a global shift of the Uð1Þ gauge field. Moreover, we
consider for simplicity the case in which all fermions have
the same electric charge.
Let us consider the situation depicted in Fig. 2:Direction y

is compactified in the presence of a magnetic field orthogo-
nal to the x − y plane. The Wilson line sitting at x1 couples
to dynamical fermions of charge q through a local phase

factor, i.e., in the combination LðxÞeiq
H

dyayðx;yÞ ¼
LðxÞeiϕðxÞ: Such a coupling tends to align the Wilson line
along the center element closest to e−iϕðxÞ. However,
because of the x dependence, it tends to align Wilson lines
sitting at different values of the noncompactified coordinates
along different center elements; i.e., the Uð1Þ background
field may induce for small enough compactification length
Lc, a structure of different center domains.
Whereas the value of a single phase factor is not

physically relevant and gauge dependent, the phase differ-
ence between different points is. Indeed, we have

ei½ϕðx2Þ−ϕðx1Þ� ¼ exp
�
iq

I
dy½ayðx2; yÞ − ayðx2; yÞ�

�

¼ eiqΦB ; ð3Þ
where ΦB is the total magnetic field flux going through the
shadowed surface in Fig. 2. Despite the simplified situation,
it is easy to realize that the value of this flux is, for any
magnetic field distribution, a property of the points x1 and
x2 only, independent of the shape of the surface in the
noncompactified directions. Therefore, modulo a global
center rotation, the structure of center domains that tends to
be formed is a unique property of the magnetic background.

However, the fact that such a structure actually forms is
nontrivial, since different center domains imply the pres-
ence of interfaces separating them, which has a cost in
terms of energy. The actual structure will depend on the
balance between the energy spent in creating center
interfaces and the energy spent in keeping the holonomy
in a locally wrong vacuum: The former is a function of the
interface tension and of the density of interfaces, which
depends on the magnetic field strength, and the latter is a
function of the holonomy effective potential. Since both the
interface tension and the effective potential are functions of
Lc, one may expect that different phases, corresponding to
different center domain structures, are crossed as the
compactification radius shrinks, with corresponding phase
transitions and metastable states.
To facilitate the discussion, let us focus on a four-

dimensional (4D) gauge theory with a uniform and constant
magnetic background field Fxy ¼ B. We will compare two
extreme situations: that in which all center domains are
actually formed (i.e., the holonomy is in the correct “local
vacuum” everywhere) and that in which the holonomy
stays in the same center sector everywhere, without form-
ing any interface. In the first case, making reference to
Fig. 2, the number of interfaces, Nint, is given by the
different center sectors spanned by the local phase between
x1 and x2, i.e.,

Nint ¼ qΦB=ð2π=NÞ ¼ qBLLcN=2π; ð4Þ
where L ¼ jx2 − x1j, while in the second case one must
keep the holonomy in the wrong center sector for a fraction
ðN − 1Þ=N of the region between x1 and x2.
In the small Lc limit, we can recover perturbative results

obtained in the thermal field theory, where Euclidean time is
compactified and T ¼ 1=Lc. The interface tension (i.e., the
energy per unit interface area) is proportional to
L−3
c logð1=LcÞ [7], and the energy density spent to keep

the holonomy in the wrong vacuum is proportional to L−4
c

[6]. Apart from a common integration factor over the
noncompactified directions orthogonal to x, the energy
spent to create all possible interfaces between x1 and x2
is then proportional to qBLL−2

c logð1=LcÞ, while the energy
spent to maintain the holonomy in the same center sector,
without creating any interface, is proportional to LL−4

c . The
first situation is clearly favored, at a fixedmagnetic field, for
small enough Lc and, at fixed Lc, for small enough B. For
intermediate values of Lc and/or B, the lowest energy
configuration might correspond to a partial formation of
the center domain structure, so that various phase transitions
can be crossed as the two quantities change.Given the power
law dependence on Lc, a similar behavior is expected when
Lc is changed at fixed total flux, i.e., if B ∝ 1=Lc.
Note that, for a uniform background, an exact symmetry

appears: An elementary center transformation can be
reabsorbed by a translation along x by 2π=ðqBLcNÞ.
This discrete symmetry can be either exactly realized
or spontaneously broken. In the first case, after each

y

B

xx1 2 x

FIG. 2. Space dimension y is compactified in the presence of a
background field. The non-Abelian holonomies sitting at x1 and
x2 couple differently to dynamical fermions, depending on the
flux of the field across the shaded surface.
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translation by 2π=ðqBLcNÞ the holonomy rotates by
−2π=N, and the spatial average of the Wilson line is
exactly zero. In the second case, the holonomy fails to
rotate and stays in a false vacuum somewhere. Therefore,
the spatial average of the Wilson line could be nonzero and
may serve as a nonlocal order parameter. We notice an
analogy with the topological order parameter of Ref. [8],
where the imaginary quark density is integrated over a loop
in the complex chemical potential and keeps a trace of
center domain crossings during the loop.
Numerical simulations.—To test this scenario, we have

performed numerical simulations of a 4D SUð3Þ gauge
theory, with two degenerate and equally charged dynamical
flavors in the fundamental representation, adopting the
rational hybrid Monte Carlo algorithm [9] implemented on
Graphics Processing Units (GPUs) [10]. The theory has
been discretized with standard rooted staggered fermions
on a periodic 4D torus, with a uniform magnetic field
orthogonal to the x − y plane and the y direction signifi-
cantly shorter than the others, as in Fig. 2. The partition
function reads

Z≡
Z

DUe−SG detD1=2½U; q�; ð5Þ

DðqÞ
i;j ≡ amδi;j þ

1

2

X4
ν¼1

ηνðiÞ½uðqÞν ðiÞUνðiÞδi;j−ν̂

− u�ðqÞν ði − ν̂ÞU†
νði − ν̂Þδi;jþν̂�; ð6Þ

where DU is the integration over SUð3Þ gauge links, SG is
the plaquette pure gauge action, i and j are lattice site
indexes, and ηνðiÞ are staggered phases. The Uð1Þ phases
uðqÞμ ðiÞ are chosen to reproduce a uniform magnetic field
across the x − y plane, which, as a consequence of the
periodic b.c., is quantized according to [11–14]

qB ¼ 2πb=ðLxLya2Þ; ð7Þ

where b is an integer. The number of different center
sectors which should be crossed when moving along the x
direction is then equal to Nb ¼ 3b.
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FIG. 3. Local average of the real and imaginary parts of the
Wilson line as a function of x (up) and in the complex plane
(down), for Lx ¼ 72, Lc ¼ 4, and b ¼ 1 [see Eq. (7)]. Thick lines
in the upper figure represent a fit to the perturbative interface
profile [7,16–18].
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FIG. 4. As in Fig. 3, for Lx ¼ 36, Lc ¼ 8, b ¼ 1 (correspond-
ing to the same B of Fig. 3), and two different simulations,
starting from random (hot) or unit (cold) gauge links. In both
cases, the center-translational symmetry is spontaneously broken:
For the cold start a single center domain is formed, and for the
other a phase with two center domains emerges.
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We have worked in a fixed cutoff scheme, setting the
inverse gauge coupling β ¼ 6=g20 ¼ 6.2 and the bare quark
mass am ¼ 0.01 in all simulations. We have considered
Lx × Ly × Lz × Lt lattices, fixing Lx ¼ Lt ¼ 24 and then
tuning Ly ¼ Lc to change the compactification radius
and Lx and b to change the magnetic background at fixed
Lc. Such bare values correspond roughly to a pion mass of
the order of the ρ mass [15]. For all explored values
of the compactification radius, the corresponding thermal
system at a zero background field is in the deconfined
phase.
In Fig. 3, we show results for the real and imaginary parts

of the Wilson line from simulations with Ly ¼ 4, Lx ¼ 72,
and b ¼ 1; data are reported both as a function of x and in
the complex plane. The center-translational symmetry is
realized exactly: The predicted three center domains,
separated by three interfaces, are clearly visible, and the
system is globally center symmetric. We notice that the
interface (domain wall) profiles are nicely described by
the functional form predicted by the perturbation theory
[7,16–18]: A fit to such a prediction [see, e.g., Eq. (22) of
Ref. [18]] is reported in Fig. 3.
However, as we increase Lc while keeping B ∝

b=ðLcLxÞ fixed, the situation changes. In Fig. 4, we report
results obtained for Lc ¼ 8. In this case, two different
phases emerge, depending on the starting configuration of
the simulation. In both of them, the global center symmetry
is spontaneously broken: In one phase, the system chooses
a single center domain, as for a standard thermal system in
the high-T regime; therefore, we name it the “deconfined
phase”; in the other, instead two center domains are formed,
with the corresponding separating interfaces and, due to the
characteristic shape in the complex plane (see Fig. 4), we
name it the “banana phase.” For Lc ¼ 6 one finds that the
global center symmetry is exact, while for Lc > 8 only the
deconfined phase survives. The metastability found for

Lc ¼ 8 is a clear suggestion that the different phases are
separated by strong first-order transitions.
A similar pattern takes place if one changes Lc at a fixed

magnetic flux, i.e., by scaling B ∝ 1=Lc. This is visible in
Fig. 5, showing two different compactifications Lc ¼ 4 and
10, with the same flux as for the Lc ¼ 8 case in Fig. 4.
Finally, in Fig. 6, we show a set of results in which B is

changed at fixedLc. As expected, asB increases, the system
moves from the phase with an exact global center symmetry
to the banana phase and, finally, to the deconfined phase; in
all examples shown the phases are stable; i.e., they are found
independently of the starting configuration.
A nonlocal order parameter for the realization of the

center-translational symmetry is the spatial average of the
Wilson line over all noncompactified directions. Its time
history is reported in Fig. 7 for some of the cases discussed
above, including the metastable case reported in Fig. 4.
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FIG. 5. Local average of the real and imaginary parts of the
Wilson line for Lx ¼ 36 and Lc ¼ 4, 10, keeping the total
magnetic flux unchanged (b ¼ 1).
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FIG. 6. Local average of the real and imaginary parts of the
Wilson line in the complex plane, for Lc ¼ 8 and three values of
B, for which three different phases are found.
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FIG. 7. Monte Carlo histories of the modulus of the spatially
averaged Wilson line (order parameter for center-translational
symmetry) for simulations at fixed Lc and variable B.
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Concluding remarks.—We have discussed how the
compactification of a non-Abelian gauge theory in the
presence of a Uð1Þ background field is accompanied by
the formation of a structure of center domains, dictated by
the dynamics of the holonomy, for asymptotically small
values of Lc. As Lc increases, the energetically favorable
structure can change, leading to different phases charac-
terized by a reduced number of domains; such phases are
likely separated by first-order transitions, leading to the
formation of metastable states. A similar behavior is found
as B increases at fixed Lc.
We have focused on SUð3Þ with degenerate fermions. If

the electric charges are different and/or for different gauge
groups, the structure of center domains can be different
because of the competing contributions from differently
charged fermions. However, the general picture will be
similar and will not be changed even in the presence of a
different number of noncompactified dimensions.
Therefore, our results, in particular, the appearance of

different phases and of metastable states and domain walls
as Lc and/or B change, could be of interest for various
contexts, like for gauge theories with extra dimensions
which get compactified in the presence of background
fields but possibly also for condensed matter systems
presenting an emerging non-Abelian symmetry.
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