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Recent experiments in noninteracting ultracold atoms in three-dimensional speckle potentials have
yielded conflicting results regarding the so-called mobility edge, i.e., the energy threshold separating
Anderson localized from diffusive states. At the same time, there are theoretical indications that most
experimental data overestimate this critical energy, sometimes by a large amount. Using extensive
numerical simulations, we show that the effect of anisotropy in the spatial correlations of realistic disorder
configurations alone is not sufficient to explain the experimental data. In particular, we find that the
mobility edge obeys a universal scaling behavior, independently of the speckle geometry.
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When a wave travels in a random medium, the interfer-
ence between multiple scattering paths caused by the
disorder barriers can completely stop its diffusion. This
phenomenon, known as Anderson localization [1], is
completely general and applies to any kind of waves
including light waves in diffusive media [2,3] or in
photonic crystals [4,5], ultrasound [6], microwaves [7],
and atomic matter waves [8,9]. Localization experiments
using noninteracting cold atomic gases have several advan-
tages over their solid-state counterparts [10,11]. The
inhibition of transport is directly measured by probing
the expansion of a wave packet in the presence of disorder.
The effect of interactions, which unavoidably hinders
localization measurements in solid-state systems, can here
be reduced by diluting the Bose-Einstein condensate or by
using Feshbach resonances. Last, far-detuned laser speck-
les can be used as tunable disordered potentials, allowing
the exploration of the localization phase diagram.
Several experiments [12–14] on cold atomic gases have

attempted to characterize metal-insulator Anderson tran-
sitions in three dimensions, starting from a precise meas-
urement of the mobility edge. This turns out to be difficult,
both theoretically and experimentally. Since the Anderson
transition is a second-order quantum phase transition [15],
the localization length diverges on the localized side and
the diffusion coefficient slowly vanishes on the diffusive
side. Distinguishing the two behaviors requires long
observation times [16], which is not easily achievable in
experiments. Moreover, an atomic wave packet expanding
in a random potential inevitably contains states at different
energies, thus mixing localized and extended components.
For these reasons, results on the position of the mobility
edge are widely spread. On the theoretical side, the metal-
insulator transition takes place in the strongly scattering

regime where perturbative expansions fail. For spatially
correlated disorder, there is no reliable analytical method
predicting accurately the position of the mobility edge
[17–20] and one has to resort to the indignity of numerical
calculations. The first quasi-exact numerical estimations
[17,21] of the mobility edge lie significantly below most
experimental measurements. It has been proposed [14] that
the anisotropic correlation functions of realistic disordered
potentials, not taken into account in Ref. [17], could be at
the origin of this discrepancy. Reproducing all minute
details of experimental speckle configurations in numerical
simulations is cumbersome, if desirable at all. It would be
more profitable to understand how the mobility edge
changes with speckle geometry, and know its more uni-
versal features. In the present Letter, we show that there
exists a nontrivial scaling of the mobility edge, given in
Eq. (4) below, involving a renormalization of the amplitude
of the disordered potential. This allows us to take into
account the effect of anisotropy on the localization phase
diagram by a proper rescaling of the characteristic energies.
This crucial point was overlooked in a previous numerical
study [21], because the anisotropy was varied at constant
disorder strength, while the proper scaling variable is the
ratio of the disorder strength to the anisotropy-dependent
correlation energy.
Disordered optical potentials used in current experiments

are created by shining coherent laser beams through
diffusive plates, as sketched in Fig. 1(a). The shift of
atomic energy levels due to light-matter coupling is
proportional to the intensity of radiation I, yielding an
effective optical potential VðrÞ ∝ IðrÞ=δ for the center-of-
mass motion of the atoms, where δ is the detuning between
the laser and the atomic transition frequency [22]. We
restrict our study to blue-detuned speckles, corresponding
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to δ > 0, which are widely used in experiments. The optical
disorder is then always positive and its potential distribu-
tion obeys the Rayleigh law. Without loss of generality, it is
customary to shift V by its average value V0, so that the
distribution takes the form

PðVÞ ¼ ΘðV þ V0Þ
V0

exp

�
−
V þ V0

V0

�
; ð1Þ

ΘðxÞ being the unit step function. With this choice, hVi ¼
0 and hV2i ¼ V2

0. The fact that the local potential distri-
bution PðVÞ is not Gaussian and strongly asymmetric—in
contrast with model potentials often used in theoretical
calculations—has important consequences for the behavior
of the mobility edge [23–25].
Optical speckle potentials are spatially correlated. The

two-point correlation function

hVðr0ÞVðr0 þ rÞi ¼ V2
0CðrÞ ð2Þ

is characterized by finite correlation lengths, which, as
shown below, play a crucial role for the mobility edge. In

the simplest model of a three-dimensional isotropic speckle
potential (created by a monochromatic laser of wave vector
kL coming from all directions of space), the correlation
function is CðrÞ ¼ ½sinðr=σÞ=ðr=σÞ�2, where σ ¼ 1=kL.
For this model potential, the mobility edge has been
numerically computed in Ref. [17]: the mobility edge Ec
lies way below the average potential, Ec < 0, a nontrivial
behavior confirmed by various approximate theoretical
approaches based on the self-consistent theory of locali-
zation [19,20].
In the simple case of isotropic correlations in the

potential, there is a natural energy scale associated with
the correlation length σ, called the correlation energy
[18,26]:

Eσ ¼
ℏ2

mσ2
; ð3Þ

where m is the atomic mass. For V0 ≪ Eσ, the de Broglie
wavelength of an atom with energy V0 is much larger than
the correlation length of the potential, so that the particle
can tunnel through the disorder barriers. In this so-called
“quantum” regime, the mobility edge is expected to be very
close to zero. In contrast, for V0 ≫ Eσ, the matter wave
resolves all the details of the disordered potential. In this
“classical” regime, the mobility edge is expected to be close
to the percolation threshold of the potential, which is very
close to −V0 [27]. Among the three characteristic energy
scales, Ec, V0, Eσ , only their ratios matter, so that one has a
unique (unknown) scaling function such that

Ec

V0

¼ F
�
V0

Eσ

�
; ð4Þ

with limx→0F ðxÞ ¼ 0− and limx→∞F ðxÞ ≈ −1.
The question most relevant to experiments is whether

this scaling behavior applies to realistic speckles with
anisotropic correlation functions. Two different experimen-
tal setups have essentially been developed. In Ref. [12], a
single diffusive plate was used to create a speckle pattern
with a rather strong anisotropy, depending on the numerical
aperture θ0 of the imaging system. For θ0 small, the
correlation lengths parallel and orthogonal to the laser
beam (of wavelength λL) scale as λL=θ20 and λL=θ0,
respectively [28]. For experimental setups in which two
crossed coherent laser speckles are made to interfere
[13,14], additional fringes of spacing λL=

ffiffiffi
2

p
appear, as

shown in Fig. 1(b). In both cases, different correlation
lengths are present in the system, so that it is no longer clear
how to define the correlation energy in Eq. (4).
In order to understand the effect of the anisotropy of

realistic optical disorder, we have performed quasi-exact
numerical calculations for two different speckle geometries
and various values of the numerical aperture (details on the
numerical procedure can be found in the Supplemental
Material [29]). In Fig. 2(a) we plot the normalized mobility

FIG. 1. Properties of the optical disorder potential. (a) Exper-
imental configuration for the generation of an optical disorder
potential using two interfering laser beams (along the bisectors of
the x and y directions), as used in Refs. [13,14]. (b) A typical
numerical realization of the disordered potential in the xy, yz, and
zx planes. (c) Numerically computed two-point correlation
function of the disordered potential as function of position (in
units of the laser wavelength λL) along the x, y, and z directions.
The three correlation lengths σx ≈ 0.99, σy ≈ 0.13, and σz ≈ 0.72
(see text) are markedly different in such anisotropic experimental
configuration, here θ0 ¼ 0.3.
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edge Ec=V0 for the single laser speckle configuration as a
function of the disorder amplitude V0, expressed in units of
EL ¼ ℏ2k2L=m, for five values of the numerical aperture θ0
controlling the anisotropy. In Fig. 3(a), the same quantity is
plotted for a disordered potential generated by two crossed
coherent laser speckles, for four values of θ0. The first
striking observation is that the mobility edge is always
negative (i.e., below the average potential) for all aniso-
tropic configurations, as for the isotropic speckle whose
results are also plotted in the figures. The second striking
observation is that, although the mobility edge values
widely depend on the anisotropy, the behavior in each
case is strongly similar.
This suggests that the scaling law, Eq. (4), can be

extended to the anisotropic case by an appropriate redefi-
nition of the correlation energy. For anisotropic disorder, it
is customary [12,14] to define the correlation energy using
the geometric average of the correlation lengths along the
three directions (see the justification in the Supplemental
Material [29]), namely,

Eσ ¼
ℏ2

mðσxσyσzÞ2=3
; ð5Þ

with σx, σy, and σz being the correlation lengths of the
disorder along the major axes. These are defined here as the
half-width at half-maximum of the central correlation peak

divided by the numerical factor γ ≈ 1.39156 (such that
sin γ=γ ¼ 1=

ffiffiffi
2

p
); see Fig. 1(c). This ensures the compat-

ibility with the definition used in Ref. [17] for the isotropic
case. Since the correlation lengths along the three axes are
larger in the isotropic case [see Fig. 1(c)], the anisotropic
speckle scatters less efficiently the atoms, resulting in a
larger mean free path l at the same disorder strength and
energy. The mobility edge, which is roughly determined by
the Ioffe-Regel criterion kl ≈ 1, then occurs at a lower
momentum k, that is at lower energy. This qualitatively
explains why in Figs. 2(a)–3(a) all curves are shifted
downwards as θ0 decreases.
In Figs. 2(b) and 3(b), we replot the same numerical

values of the mobility edge vs the rescaled disorder strength
V0=Eσ for the various anisotropic configurations, each
configuration having a specific Eσðθ0Þ horizontal rescaling
factor as defined in Eq. (5). Amazingly, all curves collapse
on a single universal curve, independently of the anisotropy
and whether the speckle pattern is created by a single laser
beam or two crossed beams. This constitutes a major result
of this Letter, as it allows us to take into account all
complications introduced by the inherent anisotropy of
experimental speckle disorder through a simple rescaling of
the characteristic energies.
Strictly speaking, this universality cannot be exact, as

details of the disorder correlation function must have an
influence on the position of the mobility edge. However,
the system being strongly scattering at the mobility edge
(according to the Ioffe-Regel criterion, the mean free-path
is shorter than the de Broglie wavelength), long-range
correlations in the potential are essentially irrelevant.
This universality is more accurate in the quantum regime

FIG. 3. Normalized mobility edge Ec=V0 for a two-crossed-
speckles configuration [as depicted in Fig. 1(a)] plotted (a) as
function of disorder strength V0 (in units of EL), (b) as a function
of rescaled disorder strength V0=Eσ with correlation energy
Eσ ¼ ℏ2=mðσxσyσzÞ2=3. Values of the numerical aperture are
θ0 ¼ f0.5; 0.8g (respectively, lower and upper solid colored
lines) and θ0 ¼ f0.3; 0.4g (respectively, lower orange and upper
blue points). The black dashed line is the same as in Fig. 2. Note
that the correlation lengths are modified with respect to the single
speckle geometry; see Fig. 1(c).

FIG. 2. Mobility edge for atoms in a single laser speckle.
(a) Calculated values of the normalized mobility edge Ec=V0 vs
the disorder amplitudeV0 in units ofEL ¼ ℏ2k2L=m (kL is thewave
vector of the laser beam and m the atomic mass). Different
curves correspond to different numerical apertures θ0 ¼
f0.4; 0.5; 0.7; 0.85; 1.0g (from lower to upper solid colored lines),
which control the degree of anisotropy. The black dashed line shows
the mobility edge for the isotropic case, obtained by smoothly
interpolating the numerical results of Ref. [17] (black symbols).
(b) Same data vs the rescaled disorder strength V0=Eσ , where
Eσ ¼ ℏ2=mðσ2⊥σ∥Þ2=3 is the correlation energy. σ∥ and σ⊥ are the
correlation lengths along and perpendicularly to the laser beam,
respectively, and differ for each θ0 value. All points approximately
lie on the “universal” curve obtained for the isotropic case. Brown
squares are the results of an independent estimation of the mobility
edge [21], in fair agreement with our results.
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V0 ≪ Eσ where the matter wave averages out the disor-
dered potential. In the regime of current cold-atom experi-
ments, the universal function F allows us to predict the
position of the mobility edge within a few percent, which is
largely enough considering that the discrepancy between
experimental results and theoretical predictions is of the
order of 100% or higher.
Recently, the position of the mobility edge in the single

speckle configuration has been estimated in Ref. [21], using
a different method based on the statistical properties of the
energy spectrum. We have added the corresponding
points—which lie slightly above our results—in Fig. 2(b).
To date, three different cold-atom experiments have

reported measurements of the mobility edge in blue-
detuned speckle disorder [12–14]. Although these experi-
ments do not use the same setup for the generation of the
optical disorder potential and hence have different potential
correlation functions, they share the same technique to
probe the mobility edge: prepare a wave packet localized in
configuration space and let it expand in the presence of
disorder. In the experiments, the energy distribution of the
wave packet—which should be as narrow as possible—
may extend on the two sides of the mobility edge, yielding
a localized fraction of atoms at long times. By measuring
this quantity and knowing the energy distribution of the
initial wave packet, one can infer the position of the
mobility edge. The three experiments use different tech-
niques to determine the localized fraction and the energy
distribution, each having its advantages and drawbacks.
The universal scaling of the mobility edge predicted above

allows a direct quantitative comparison of our numerical
results with the available experimental data, which are
gathered in Fig. 4. The experiment of Ref. [12] used a very
anisotropic single speckle configuration. The use of spin-
polarized fermionic atoms allowed the authors of Ref. [12] to
avoid atom-atom interactions and to have a rather well-
known energy distribution in the absence of disorder.
However, the disorder strength used in this experiment is
large and surely affects the energy distribution. Moreover,
the duration of the experiment may have been too short to
detect slow diffusion above the mobility edge [36], leading
to an overestimation of the lowest diffusive energy. As can
be seen in the inset of Fig. 4, their inferred mobility edge is
large and positive (that is above the average potential), in
contradiction with all numerical and theoretical predictions.
We thus conclude that these results are impaired by some
severe imperfections.
The experiment of Ref. [13] used two crossed speckles to

achieve a more isotropic configuration. The wave packet is
prepared with a narrow energy distribution in the absence
of disorder; the disorder being applied abruptly, the energy
distribution of the atoms in the presence of disorder is much
broader—extending on both sides of the mobility edge—
resulting in a rather small localized fraction. An estimate of
the mobility edge (see Ref. [13] for detailed explanations

on the procedure used) yields the straight red line Ec=V0 ¼
−2.44V0=Eσ shown in Fig. 4, in fair agreement with our
numerical predictions and notably below the average
potential.
The most recent experiment of Ref. [14] used a similar

two-speckles configuration. Thanks to the control of atom-
atom interactions via a Feshbach resonance, it was possible
to prepare a rather narrow energy distribution in the
presence of the disorder. When the disorder amplitude is
rescaled by the appropriate Eσ , the qualitative behavior of
the inferred mobility edge versus V0 is similar to our
numerical results, but quantitatively too high. The origin of
this deviation is not entirely clear to us at the moment.
To summarize, we computed numerically the mobility

edge for noninteracting cold atoms in three-dimensional
speckle potentials, taking into account the long-range
anisotropic disorder correlations that characterize realistic
experimental configurations. We have shown that the
mobility edge displays a robust scaling property when
the anisotropy of the speckle geometry is varied, the
correlation energy of the potential—defined from
the geometric mean of the correlation lengths—being the
scaling parameter. While the early experimental results in
Ref. [13] seem in fair agreement with our predictions, we
observe strong discrepancies with Ref. [12]. The more
accurate measurements reported in Ref. [14] are closer to

FIG. 4. Experimental values of the mobility edge for non-
interacting cold atoms in blue-detuned speckle disorder inferred
from three different experiments. Both Ref. [13] (red line, in the
weak disorder regime) and Ref. [14] (blue line, with error bars)
use two crossed coherent speckles, while the setup of Ref. [12]
uses a single, strongly anisotropic, speckle (green line in the inset,
with error bars). The correlation energy Eσ has been computed
using the correlation lengths provided in each article. The
universal curve for the mobility edge—extracted from previous
[17] numerical results for isotropic speckles and validated for
anisotropic speckles in Figs. 2–3—is also represented for
reference (black dashed line). The horizontal dotted line is the
average potential.
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our quasi-exact numerical simulations, but still show
significant deviations, calling for further studies. The
nontrivial scaling law for the position of the mobility edge
unveiled in this Letter provides strong guidance for the next
generation of such experiments striving to measure the
critical exponents and multifractal behavior appearing right
at the transition point.
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