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Parafermions are emergent excitations that generalize Majorana fermions and can also realize
topological order. In this Letter, we present a nontrivial and quasi-exactly-solvable model for a chain
of parafermions in a topological phase. We compute and characterize the ground-state wave functions,
which are matrix-product states and have a particularly elegant interpretation in terms of Fock
parafermions, reflecting the factorized nature of the ground states. Using these wave functions, we
demonstrate analytically several signatures of topological order. Our study provides a starting point for the
nonapproximate study of topological one-dimensional parafermionic chains with spatial inversion and
time-reversal symmetry in the absence of strong edge modes.
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Introduction.—The study of topological order (TO) is
currently one of the most active research fields in con-
densed-matter physics. From the Affleck-Kennedy-Lieb-
Tasaki (AKLT) model [1] to the Laughlin wave function
[2], from the Kitaev chain [3] to the toric code [4], this
study has always benefited from the development of
exactly solvable models and of paradigmatic wave func-
tions, whose detailed analysis permits the formation of a
clear physical intuition, to be used in the understanding of
complex experimental setups.
In this Letter, we focus on parafermions, a generalization

of Majorana fermions [5]. After the experimental clarifi-
cation that two zero-energy Majorana modes can be
localized at the edges of a one-dimensional fermionic wire
[6,7], the possibility of localizing parafermionic modes,
and letting them interact, is currently under deep inves-
tigation. These excitations cannot appear in strictly one-
dimensional spinless fermionic systems [8,9] but may
emerge at the edge of a two-dimensional fractional topo-
logical insulator coupled to alternating ferromagnetic and
superconducting materials [5,10–15], as well as in other
nanostructures or models [16–24].
In these setups, one-dimensional chains of interacting

parafermions arise, which, in certain circumstances, display
TO and edge ZN parafermionic modes [5,25–34]. Such
edge modes are called strong when they commute with the
Hamiltonian [35] and thereby generate an N-fold degen-
eracy in the entire spectrum and weak when the commu-
tation property and associated degeneracy are restricted to
the ground-state manifold. TO survives weak perturbations
and hosts indistinguishably weak or strong modes [36]. The
importance of parafermionic zero modes for topological
quantum computation [37] motivates further investigations
of these fractionalized systems.

In this Letter, we provide a nontrivial family of paraf-
ermionic models for which the properties of the ground
states can be exactly characterized. These models are
gapped, display TO, have spatial inversion and time-
reversal symmetries, and feature weak edge modes; they
thus belong to the same symmetry class for which weak
edge modes have been discussed so far with numerical and
perturbative analytical methods [28,31,36], with the ad-
vantage of being easy to handle. We analytically establish
several key signatures of TO which can be easily extracted
from the wave functions: (i) the presence of nonlocal edge-
edge correlations, (ii) the indistinguishability of ground
states by a symmetry-preserving local observable, (iii) the
fact that only operators living at the edges are able to
permute ground states, and (iv) the N-fold degeneracy of
the entanglement spectrum [26]. We also motivate the
existence of weak edge modes.
The analysis rests on an intuitive “particlelike” picture of

parafermions [38,39], that naturally leads to a formulation
of the ground states in terms of matrix-product states
(MPSs) [40]. Our model is thus a simple platform for
the direct study of TO in parafermionic systems, which is
particularly valuable given even the absence of a non-
interacting and exactly solvable limit (see, however,
Ref. [34]). For simplicity, we present our discussion in
the case of Z3 parafermions, but the construction can be
easily generalized to ZN parafermions. A similar study has
been discussed in the fermionic (Z2) case [41].
The model.—We consider a one-dimensional chain with

length L of Z3 parafermions. Each lattice site k is
associated with two parafermionic operators γ̂2k−1 and
γ̂2k, which satisfy the following properties: γ̂3j ¼ 1 and

γ̂†j ¼ γ̂2j ; moreover, γ̂jγ̂l ¼ ωγ̂lγ̂j for j < l, where

PRL 118, 170402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

28 APRIL 2017

0031-9007=17=118(17)=170402(6) 170402-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.170402
https://doi.org/10.1103/PhysRevLett.118.170402
https://doi.org/10.1103/PhysRevLett.118.170402
https://doi.org/10.1103/PhysRevLett.118.170402


ω ¼ e2πi=3. We consider the following model, Ĥ ¼ Ĥ0 þ
bĤ1 þ b2Ĥ2:

Ĥ0 ¼
X
j

ð−fω�γ̂†2j−1γ̂2j − Jωγ̂2jγ̂
†
2jþ1 þ H:c:Þ; ð1aÞ

Ĥ1 ¼ −J
X
j

ðÂjγ̂
†
2jþ1 þ γ̂2jB̂

†
jþ1 þ H:c:Þ; ð1bÞ

Ĥ2 ¼ −J
X
j

ðω�ÂjB̂
†
jþ1 þ H:c:Þ; ð1cÞ

where Âj ¼ ðγ̂2j−1 þ γ̂†2j−1γ̂
†
2jÞ and B̂j ¼ ðγ̂2j þ γ̂†2jγ̂

†
2j−1Þ.

For b ¼ 0, Ĥ reduces to the well-known parafermionic
version of the three-state Potts quantum chain [42–47]. For
positive f and J, such a model has a topological phase
transition at f ¼ J between a topological phase with zero
boundary modes (f < J) and a trivial phase (f > J). For
f ¼ 0, the Hamiltonian is the sum of commuting and
frustration-free terms and displays TO.
Quasi-exactly-solvable line.—The Hamiltonian (1) has

a quasi-exactly-solvable line (where only the ground
state but not the excited states can be exactly computed)
parametrized by ϕ ∈ R:

f
J
¼ −6

1 − e−2ϕ

ð1þ 2e−ϕÞ2 ; b ¼ 1 − e−ϕ

1þ 2e−ϕ
; ð2Þ

which is plotted in Fig. 1. We consider open boundary
conditions; the properties of the ground states are exactly
computable once the boundary term is introduced:

ĤB ¼ þ f
2
ðω�γ̂†1γ̂2 þ ω�γ̂†2L−1γ̂2L þ H:c:Þ: ð3Þ

This term does not change the thermodynamics of the
model and produces modifications which scale as L−1,
which are negligible in the thermodynamic limit.
We begin by considering the point ϕ ¼ 0. Here, the

Hamiltonian can be rewritten in the following expressive
form: ĤþĤB¼−2JðL−1ÞÎþJ

P
L−1
j¼1 l̂

†
j l̂j, where l̂j ¼

γ̂†2j − ωγ̂†2jþ1. The first term, inessential, is proportional
to the identity. The second part, instead, is non-negative,
and its three ground states jgi;ϕ¼0i (i ¼ 0, 1, 2) are

characterized by l̂jjgi;ϕ¼0i ¼ 0.
In order to visualize this result in solely parafermionic

terms, we employ the “Fock parafermions” fĈjgLj¼1:

γ̂2j−1 ¼ ωðĈj þ Ĉ†2
j Þ and γ̂2j ¼ Ĉjω

N̂j þ Ĉ†2
j , where N̂j ¼

Ĉ†
j Ĉj þ Ĉ†2

j Ĉ2
j is the number operator [38]. The Fock-

parafermion operators are a generalization of canonical
Fermi operators and satisfy, among others, the following
commutation relations: Ĉ3

j ¼ 0 and ĈjĈk ¼ ωĈkĈj

(j < k). They are associated with a local Fock space where
a number of Fock parafermions between 0 and 2 can be

accommodated and are amenable to a simple picture of
particlelike excitations. The Hilbert space of the whole
chain is spanned by all Fock states jfnjgi, where nj ∈
f0; 1; 2g is the number of parafermions at site j.
The three ground states read

jgi;ϕ¼0i ¼
1ffiffiffiffiffiffiffiffiffi
3L−1

p
X

fnjgsuch thatP
j
nj≡iðmod3Þ

jfnjgi; i ¼ 0; 1; 2: ð4Þ

They are the equal-amplitude superposition of all Fock
states with a number N of Fock parafermions such that
N ≡ iðmod3Þ. These states are similar to the Rokhsar-
Kivelson states proposed in resonant valence-bond liquids
[48]. Such states are, in fact, ubiquitous in the study of
topological phases of matter, and they can also be encoun-
tered in the two- and three-dimensional toric code [4,49], in
the AKLT model [1], or in the study of topological
Majorana zero-energy modes [3,41,50,51]. The proof of
Eq. (4) is obtained by expanding l̂j ¼ ω−N̂j Ĉ†

j − Ĉ†
jþ1 þ

Ĉ2
j − Ĉ2

jþ1 and explicitly inspecting that l̂jjgi;ϕ¼0i ¼ 0.

Excited states are obtained by applying the operators l̂†
j to

the states jgi;ϕ¼0i and normalizing, which demonstrates the
presence of a gap 3J [52].
We now move to ϕ ≠ 0. We claim that the ground states

are given by
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FIG. 1. Phase space of the model (1). The ground state is
exactly solvable along the red line, which is parametrized ϕ
according to Eq. (2). The points ϕ ¼ �∞ and ϕ ¼ 0 are
highlighted. For better reference, the well-studied critical point
f ¼ J, b ¼ 0 with central charge c ¼ 4=5 is also highlighted.
Inset: Perturbative analysis of the size scaling of the degeneracies
Δm of the first three excited states (m ¼ 1, black circles) and
of a higher excited triplet (m ¼ 4, red squares), exhibiting,
respectively, exponential and polynomial energy splitting. The
polynomial scaling demonstrates the absence of strong edge
modes. Three values of ϕ are considered: ϕ ¼ 10−4 (solid line),
ϕ ¼ 10−3 (dashed line), and ϕ ¼ 10−2 (dashed-dotted line).
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jgi;ϕi ¼
Ẑ−ϕjgi;ϕ¼0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hgi;ϕ¼0jẐ−2ϕjgi;ϕ¼0i
q ; ð5Þ

where Ẑϕ ¼ eϕN̂=3 is a Hermitian, invertible, but nonunitary
operator, N̂ ¼ P

jN̂j being the total number of parafer-
mions in the chain. We prove our claim by constructing a
parent Hamiltonian for the states jgi;ϕi and then showing
that it coincides with Ĥ þ ĤB, as given by Eqs. (1) and (3),
apart from constant terms. We introduce a set of local
operators L̂j;ϕ ¼ Ẑ−ϕl̂jẐϕ; one easily verifies that acting
with the parent Hamiltonian

Ĥϕ ¼ J
XL−1
j¼1

L̂†
j;ϕL̂j;ϕ ð6Þ

on the states jgi;ϕi gives zero. The model is not fully
solvable and the different terms in Eq. (6) do not commute,
except for ϕ ¼ 0. Nevertheless, Ĥϕ is a strictly non-
negative operator which completes the proof that jgi;ϕi
are ground states. More explicitly, the operators L̂j;ϕ take
the form L̂j;ϕ ¼ ðe2ϕ=3=3Þ½Ŵj;ϕγ̂

†
2j − ωŴjþ1;ϕγ̂

†
2jþ1�, with

Ŵj;ϕ ¼ ð1þ 2e−ϕÞ þ ð1 − e−ϕÞðωγ̂†2j−1γ̂2j þ H:c:Þ;

such that Ĥϕ coincides with the starting Hamiltonian (1)
and the parametrization (2). The Hamiltonian remains time-
reversal invariant (a detailed discussion is in Ref. [52]), as
can be inferred by the fact that N̂j satisfies such symmetry.
Indeed, in the usual parafermionic language N̂j ¼ 1þ
½ðω� − ωÞγ̂†2j−1γ̂2j þ H:c:�=3, and, since T is antiunitary

and maps T ½γ̂†2j−1γ̂2j� ¼ γ̂†2jγ̂2j−1, the invariance follows.
Ground-state properties.—We now turn to the analytical

characterization of the jgi;ϕi. In the Fock-parafermion
representation, the ground states take a particularly simple
form:

jgi;ϕi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N L;ϕ;i

q X
fnjgsuch thatP
j
nj≡iðmod3Þ

e−ϕð
P

j
njÞ=3jfnjgi; ð7Þ

where the normalization constantsN L;ϕ;i have an analytical
expression. Comparing with the states in Eq. (4), the
coefficients of the different Fock states now depend
exponentially on the number of parafermions: The pertur-
bation is effectively acting as a chemical potential which
modifies the average number of particles.
Below, we take advantage of the relative simplicity of

the ground-state expressions (7) to compute analytically
and exactly various correlation functions. We begin by
determining the correlation length of the states jgi;ϕi
through a Z3-preserving correlation function, for instance,
Giðj; lÞ ¼ hgi;ϕjĈ†2

j Ĉ2
l jgi;ϕi. The peculiar nature of the

ground states makes it translationally invariant even for
open boundary conditions: Giðj; lÞ ¼ Giðj − lÞ. As dis-
played in Fig. 2, it exhibits an exponential decay
∼ expð−jj − lj=ξÞ for jj − lj < L=2. ξ is the correlation
length:

ξ−1 ¼ ln

���� 1þ e−2ϕ=3 þ e−4ϕ=3

1þ ωe−2ϕ=3 þ ω�e−4ϕ=3

����; ð8Þ

it is plotted in Fig. 2 as a function of ϕ. It is zero at ϕ ¼ 0,
corresponding to a renormalization group fixed point, and
diverges in the limits ϕ → �∞. Thus, no phase transition
occurs along the solvable line, apart from the extremal
values.
It is instructive to show that the correlation length

can also be computed in ways that are directly related
to the topological nature of the ground states. We consider
the expectation value of a Z3-preserving local operator,
such as hnii ¼ hgi;ϕjN̂jjgi;ϕi (for the states jgi;ϕi, there is
no dependence on j). In the thermodynamic limit, we
analytically find

hnii → nðϕÞ ¼ e−2ϕ=3 þ 2e−4ϕ=3

1þ e−2ϕ=3 þ e−4ϕ=3
; ð9Þ

independent of i and j. At finite size L, we further obtain
exponentially close values hgi;ϕjN̂jjgi;ϕi ¼ nðϕÞ þ cie−L=ξ,
as expected for TO [53], with the correlation length ξ
of Eq. (8).
Getting back to the correlation function Giðj − lÞ in

Fig. 2, we observe that the model displays nonlocal edge-
edge correlations which survive in the thermodynamic
limit. The importance of the edges is also revealed by
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FIG. 2. (Top left) Correlation function G0ðxÞ and (top right)
jhni0 − hni2j for several values of ϕ. Violet lines represent the
exponential scalings extracted from the analytical formulas.
(Bottom left) Correlation length ξ. (Bottom right) We show
one typical example of the Z3-breaking observable FiðxÞ
for i ¼ 0.
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Z3-breaking observables: In Fig. 2, we analytically com-
pute and plot FiðjÞ ¼ jhgi;ϕjĈ†

j jgi−1ðmod3Þ;ϕij for i ¼ 0,

measuring how Ĉ†
j maps ground states with subsequent

Z3 parities. The calculation reveals that it is nonzero only
for j close to the boundaries with exponential decays again
characterized by ξ. With this, we have so far encountered
the first three signatures of TO and fractionalized boundary
modes mentioned in the introduction, points (i)–(iii).
In order to confirm these findings, we consider the

entanglement spectrum of the jgi;ϕi states and prove its
threefold degeneracy; see point (iv). In a bipartition of the
system into a left part of length l and a right part of length
L − l, the ground state assumes the form

jgi;ϕi ¼
X2
p¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N l;ϕ;pN L−l;ϕ;ði−pÞmod3

N L;ϕ;i

s
jgðlÞϕ;pijgðL−lÞϕ;ði−pÞmod3i:

ð10Þ

The reduced density matrix ρ̂l is obtained by tracing out all
sites of the right part. For l ≫ ξ, the normalization constant
N l;ϕ;i scales like ∼ð1=3Þð1þe−2ϕ=3þe−4ϕ=3ÞlþOðe−l=ξÞ,
and the dependence on i appears only in the correction.
Thus, for l ≫ ξ and L − l ≫ ξ, the entanglement spec-
trum of the system is threefold degenerate, because
for every p ¼ 0, 1, 2 in Eq. (10) the coefficient of the

sum reduces to
ffiffiffiffiffiffiffiffi
1=3

p
, and the three states jgðlÞϕ;pi equally

participate to the reduced density matrix ρ̂l. In Fig. 3, we
plot the typical behavior of the entanglement spectrum as a
function of l, the position of the bipartition: Close to the

boundary (l ≪ ξ), it consists of three different values, and
away from it, they all collapse to 1=3. This expression
also clarifies the gapped nature of the system through the
area-law scaling of its von Neumann entropy Sðρ̂lÞ ¼
−tr½ρ̂l ln ρ̂l�, plotted in Fig. 3. Explicit numerical calcu-
lations of the gap, obtained with the density-matrix
renormalization group (DMRG) [54], reported in Fig. 3,
confirm this fact.
Nature of the ground states.—This extended analytical

analysis originates from the fact that the ground
states are MPSs. They can be expressed as jgi;ϕi ¼P

n1;…;nLv
T
LA

½n1�…A½nL�vR;ijn1;…nLi with the three matri-

ces A½j¼0;1;2� ¼ ðe−ϕ=3σ̂Þj, where

σ̂ ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA: ð11Þ

The parity i of the ground state is encoded in the left
and right vectors, with vTL ¼ ð1;ωi;ω2iÞ and vTR ¼
ð1; 1; 1Þ [40].
A particularly clear interpretation of the data which we

have so far displayed comes from the observation that the
ground states jgi;ϕi are linear superpositions of three
product states, as we are going to show. For ϕ ¼ 0, it
can be explicitly verified that

jgi;ϕ¼0i ¼
1ffiffiffi
3

p ð⊗
j
j~0ji þ ωi⊗

j
j~1ji þ ω2i⊗

j
j~2jiÞ;

where j~iji ¼ ðjnj ¼ 0i þ ω~ijnj ¼ 1i þ ω2~ijnj ¼ 2iÞ= ffiffiffi
3

p
.

The operator Ẑϕ acts as a product operator over the
different sites, without creating entanglement or correla-
tions. We thus observe that, by applying Ẑ−ϕ to the states
jgi;ϕ¼0i according to the prescription in Eq. (5), the states

Ẑ−ϕ⊗
j
j~iji retain a product nature. These states have zero

correlation length and thus are fixed points of the renorm-
alization group. This result can be considered an extension
to three-state clock models of known results for spin-1=2
systems about the existence of factorized ground states
[55,56], and it is intriguing to speculate that the peculiar
properties of these models might extend to parafermionic
chains [57].
Edge modes.—The parafermionic chain at ϕ ¼ 0 is

characterized by (strong) edge modes, simply given by
the operators χ̂1 ¼ γ̂1 and χ̂2 ¼ γ̂2L, permuting cyclically
the ground states. As ϕ departs from zero, the edge modes
χ̂1;2 are continuously deformed but remain local. The
calculation of FiðjÞ (see Fig. 2) already demonstrates
that they keep a significant overlap with operators located
close to the two ends of the chain. More generally,
χ̂1;2 ¼ V̂ϕγ̂1;2LV̂

†
ϕ are obtained from exact quasiadiabatic
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FIG. 3. Top left: Entanglement spectrum as a function of l for
ϕ ¼ 2. Top right: von Neumann entropy Sðρ̂lÞ as a function of l
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corresponding to an area law. Bottom: DMRG calculation of the
gap of the model obtained with length L ¼ 168; the maximal
number of retained states is m ¼ 250.
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continuation [36] of γ̂1;2L with the unitary transformation
V̂ϕ mapping the ground-state manifolds at zero and nonzero
ϕ. Being unitary, V̂ϕ preserves the parafermionic non-
commutative algebra of χ̂1;2 in the ground state, with
hgi;ϕjχ̂1jgiþ1;ϕi ¼ 1 and hgi;ϕjχ̂2jgiþ1;ϕi ¼ ω2þi. It also
preserves locality under the condition of quasiadiabaticity
[36]. This program can be applied explicitly in perturbation
with ϕ ≪ 1 and yields the left edge mode

χ̂1 ¼ γ̂1 þ αðωγ3 − γ†2γ
†
3Þ þ α�ðωγ†1γ3γ2 − γ†1γ

†
3Þ ð12Þ

to leading order in α ¼ f=J − ωb. Parafermionic operators
γ̂j are also expected to enter the expression of χ̂1 to the
order of j=2 in f=J, b, so they are exponentially suppressed
with the site index j. Similar considerations apply to the
right mode χ̂2. Finally, the form of FiðjÞ strongly suggests
that the edge states χ̂1=2 decay with the correlation length ξ
at both ends of the chain.
The operators γ̂1 and γ̂2L are strong edge modes for ϕ ¼

0 as they commute with the Hamiltonian. It can be checked
from the perturbative expression (12) that the commutation
is lost at nonzero ϕ, yielding weak edge modes. Following
Ref. [28], the low-energy part of the spectrum can be
addressed at small ϕ by projecting the full Hamiltonian (1)
onto single domain wall excitations, thus reducing the
numerical complexity. In Fig. 1, we show the results of this

analysis, where we plot Δm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

q≠q0 ðem;q − em;q0 Þ2
q

, and

em;q is the mth excited state which has a Z3 parity with
value q. We find that the lowest triplets in the excitation
spectrum (m ¼ 1) exhibit an exponential closing with the
system size, in contrast with higher triplet excitations
(m ¼ 4) where the closing is polynomial. This last obser-
vation rules out the presence of strong edge modes.
Conclusions.—In this Letter, we have presented a model

for a one-dimensional parafermionic chain which displays
TO and has quasi-exactly-solvable ground states. It beauti-
fully exemplifies the physics proposed in Ref. [36] and
allows for the explicit characterization of TO in the absence
of strong boundary modes, providing an interesting starting
point for developing a physical intuition of parafermionic
systems, which is becoming particularly compelling in
view of a forthcoming experimental realization. This is
achieved with a systematic interpretation of our results in
terms of Fock parafermions, a possibility which has not
been fully explored yet. Understanding whether there are
other parent Hamiltonians for the states jgi;ϕi which are
more physically relevant is an interesting perspective [58];
we also leave for the future further investigations concern-
ing higher-dimensional lattices [25] as well as the complete
mapping of the phase diagram of Hamiltonian (1).
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