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Hund’s coupling is shown to generally favor, in a doped half-filled Mott insulator, an increase in the
compressibility culminating in a Fermi-liquid instability towards phase separation. The largest effect is
found near the frontier between an ordinary and an orbitally decoupled (“Hund’s”) metal. The increased
compressibility implies an enhancement of quasiparticle scattering, thus favoring other possible symmetry
breakings. This physics is shown to happen in simulations of the 122 Fe-based superconductors, possibly
implying the relevance of this mechanism in the enhancement of the critical temperature for
superconductivity.
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A wealth of unexpected phenomena have been discov-
ered in strongly correlated materials, and many techno-
logical applications are foreseen. At the heart of the
observed remarkable behaviors is the many-body physics
of the conduction electrons. Indeed, their tendency to avoid
each other leads to a complex dynamics with surprising
properties, even more so in the typical multiorbital land-
scape of these systems. In particular, the different repulsion
that two electrons feel depending on them being in the same
or in different orbitals, or on the alignment of their spins
(embodied by the well-known Hund’s rules of atomic
physics), plays an important role in these materials.
Recently, our understanding of the influence of Hund’s

coupling on the metallicity properties of correlated materials
has drastically improved [1]. Three aspects have been singled
out as the most influential. (i) Hund’s coupling tunes the
splitting of atomic multiplets, which affects the distance in
energy between the various sectors of atomic states with a
given total charge. This energy is responsible for the local
charge fluctuations, in a material, and thus for the ease with
which aMott insulating state can occur. Themain outcome is
that a Mott insulating state is strongly favored when con-
duction bands arise from an atomic shell that is half filled.
(ii)Hund’s coupling typically lowers the overall coherence of
conduction electrons, especially for electron densities near
half filling. (iii) It also favors the differentiation of the
correlation strength among the conduction electrons. This
was termed “orbital decoupling” [2,3], since it stems from
Hund’s coupling suppression of orbital fluctuations, favoring
selective Mott physics depending on the orbital character
of the conduction electrons.This can cause the coexistence of
electrons with different correlation strength.
All of these results have been consistently found in iron-

based superconductors and related materials [see, for exam-
ple, Ref. [4] for (i), Ref. [5] for (ii), and Refs. [6,7] for (iii)],
thus testifying to the importance of electronic correlations
in these compounds in accordwith theoretical studies [6,8,9].
However, these materials are Fermi liquids at low

temperature [10], and their instabilities (magnetism,

superconductivity) have been consistently modeled within
weak-coupling theories [11]. The influence of electronic
correlations on the high-Tc superconductivity is at present
still not understood.
Here, we show that multiorbital correlations and Hund’s

coupling, in particular, have another, hitherto undiscovered,
influence on these systems, in that not only the quasiparticle
weight and masses but also the residual interactions between
quasiparticles can be affected in a highly nontrivial way.
This happens in the zone of influence of the aforementioned
half-filled Mott insulator. We show that Hund’s coupling
affects these interactions enhancing the compressibility of
the electron fluid, up to a point in which the system is
unstable towards phase separation. Besides the many impli-
cations that an intrinsic instability towards a phase separation
can entail [12], it is worth stressing that simply these
altered quasiparticle interactions can have direct effects on
the interaction vertices with low-energy bosons and radically
enhance some bosonic-mediated mechanisms towards
long-range ordered phases. We will show that this might
be the case for the pairing mechanism for the high-Tc
superconductivity in Fe-based superconductors.
We investigate the M-orbital Hubbard model with

Hamiltonian Ĥ − μN̂ ¼ Ĥ0 þ Ĥint − μN̂, with

Ĥ0 ¼
X

i≠jmm0σ

tmm0
ij d†imσdjm0σ þ

X

imσ

ϵmnimσ; ð1Þ

where d†imσ creates an electron with spin σ in orbital
m ¼ 1;…;M on site i of the lattice, and

Ĥint ¼U
X

m

nm↑nm↓

þU0X

m≠m0
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X
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þ−J
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The number operator is nimσ ¼ d†imσdimσ, N̂ ¼ P
imσnimσ, μ

is the chemical potential, and customarily we set U0 ¼
U − 2J and we drop the last two terms in Ĥint (spin flip and
pair hopping), which needs extra approximations to be
treated within our method of choice (the effect of these
terms is addressed in the Supplemental Material [13]).
We first study the degenerate model in which we only
consider diagonal hopping in orbital space, equal for all
orbitals, i.e., tmm0

ij ¼ tijδmm0 and ϵm ¼ 0, as a function of the

average density of electrons per lattice site n ¼ hN̂i=N sites.
We treat the model in the slave-spin mean-field approxi-

mation (SSMF) [24], and we focus on the normal,
nonmagnetic, zero-temperature metallic phase. There, the
SSMF describes the metal as a Fermi liquid by construc-
tion, yielding the following quasiparticle Hamiltonian:

H − μN ¼
X

kmσ

ðZϵk þ λ − μÞf†kmσfkmσ; ð3Þ

where f†kmσ is the creation operator of a quasiparticle with
momentum k, orbital (band) characterm, and spinσ, and ϵk is
the bare electronic dispersion relation, which is the same for
all the bands. We customarily choose a semicircular density
of states (DOS)DðϵÞ≡ ð2=πDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵ=DÞ2

p
of bandwidth

W ¼ 2D for all bands. The renormalization parameters of the
dispersion, Z and λ, are calculated in the self-consistent
SSMF scheme as an average on the auxiliary slave-spin
Hamiltonian [24], which treats explicitly the interaction term
Eq. (2). They thus embody the effect of the electronic
interactions determining the quasiparticles: Z is the quasi-
particle weight and the inverse of the mass enhancement,
while λ is a shift of the bare on-site energy. The Fermi-liquid
condition nf ≡P

kmσhf†kmσfkmσi ¼ n is built in.
We wish to study the compressibility of the electronic

fluid κel ¼ dn=dμ as a function of Hund’s coupling and the
number of orbitals in the model. We thus calculate the μ
versus n dependence in these models within SSMF. In
Fig. 1 (left-hand panel), the result for the 2-orbital Hubbard
model at a typical value of Hund’s coupling J=U ¼ 0.25 is
reported for various values of U. Remarkably, approaching
the half-filled Mott insulator (that is realized at n ¼ 2,
for U > Uc ¼ 1.96D), the slope of the μ versus n curves
vanishes, marking a divergence in the compressibility,
and then becomes negative, signaling a sizable zone in
the U/doping (from half filling, i.e., δ≡ n −M) plane,
where the system is unstable. A diverging compressibility
implies an instability towards phase separation or incom-
mensurate charge ordering [12] and a strong enhancement
of the compressibility in the thermodynamically stable zone
near the frontier.
This spinodal linemarking the phase-separation instability

in the U − δ plane is shown in Fig. 2 (left-hand panel): it
departs from the Mott transition and has a nonmonotonic
behavior as a function of the interaction strength, so that the

unstable zone widens rapidly for U > Uc, but at larger
interactions (for U=D > 3.3 in this case) it narrows again.
Hund’s coupling is essential for this instability zone to

appear; no diverging compressibility is found at J ¼ 0.
Already at very small J=U a wide zone opens at large U.
This zone moves towards lower interaction strengths for
increasing J=U, following the position of theMott transition
[2] at half filling, from which the instability frontier always
departs. The zone extends, for typical values of J=U, in the
range n ¼ 2 to ∼2.2. The complete study as a function of
J=U is presented in the Supplemental Material [13].
A similar behavior is found for the 3-orbital (Fig. 1, right-

hand panel) and 5-orbital model (shown in the Supplemental
Material [13]). Themain differencewith the 2-orbital case is,
however, that a second frontier can be traced, at smaller
doping compared to the first, where the μ vs n curve recovers
a positive slope. This signals that the instability due to the
compressibility divergence nowmostly happens in a range of
finite doping. The region (Fig. 2, left-hand panel) still departs
from theMott transition at half filling, but then extends in the
U-doping plane until the two lines merge, having thus a
“moustache” shape in theM > 2 cases, instead of an “onion”
shape like in the M ¼ 2 case. It is comparatively less
extended in U but more extended in doping. In particular,
in the 5-orbital model it approaches values close to n ¼ 6
densities. At n ¼ 6 the system is stable again, but still an
evident signature of this physics in terms of enhanced
compressibility is present.
Despite a marked difference, then, in the way the

instability zone evolves at large U, the common robust
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FIG. 1. Degenerate 2-orbital (left-hand panel) and 3-orbital
(right-hand panel) Hubbard model with semicircular DOS of
half-bandwidthD and Ising-type Hund’s coupling J=U ¼ 0.25: μ
versus n curves for different values of U. In the 2-orbital case for
Uc=D ¼ 1.96 at half filling (n ¼ 2 in this model), the system
undergoes a Mott transition. The curves for U > Uc show a
negative slope inside a spinodal line departing from the Mott
transition that is marked with black circles. In the 3-orbital case
most of the μ versus n curves for U > Uc ¼ 1.515 show a double
change of slope (the same happens in the 5-orbital model [13]),
so that the instability zone extends between two spinodal lines
(black squares), both at finite doping from half filling
(n ¼ 3 here).
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feature is that in all these models the onset of Hund’s
coupling triggers the appearance of a zone departing from
the Mott transition at half filling where the system is
unstable towards phase separation. The low-U frontier of
this zone in all cases is rather horizontal in the U-doping
plane; i.e., for U > Uc it moves quickly towards the
maximum doping it will reach. This frontier is found to
follow a well-known crossover, appearing in these models
in several physical quantities. Indeed (see, for instance,
Fig. 16 in Ref. [24]), along a line departing from the Mott
transition [8,25], at finite doping one observes for increas-
ing U or doping moving towards half filling a quick
decrease of the quasiparticle weight Z, an increase of
the interorbital spin-spin correlations, and a suppression of
the interorbital charge correlations. The crossover is very
sharp near the Mott transition, whereas it becomes pro-
gressively broader with increasing doping. At finite temper-
ature it is identifiable with the “spin-freezing crossover”
[8,26], and the recent successful denomination of
“Hund’s metal” [9] might be used for the zone at large
U-small doping. The three mentioned quantities then have
a different, and rather disconnected, evolution in other
zones of the phase diagram. This crossover is where the
compressibility divergence is empirically found to appear
for increasing interactionU in all cases (as explicitly shown
for selected cases in the Supplemental Material [13]). The
reentrant shape of the instability zone suggests a closer
analogy with the zone of reduced interorbital correlations,
however, which is the only quantity among the three
showing a similar shape in its crossover at large U [24].
Let us now analyze the origin of this behavior.

Interestingly, this phase separation arises as an instability

of the Fermi liquid, the latter being enforced, within the
SSMF method. Indeed, it is worth stressing that the renorm-
alization parameters in the quasiparticle Hamiltonian Eq. (3)
depend in an intricate way on all the couplings in the bare
Hamiltonian and the chemical potential, so that the effective
system described by Eq. (3) is not to be viewed as a simple
rigid band picturewith an effective dispersion: the dispersion
itself changes with the filling instead. Thus, besides the
quasiparticle energy (the linear—in the k-resolved density—
contribution to the energy of the system), this method also
accounts for the effects of quasiparticle interaction, (the
quadratic term); i.e., they yield the Landau parameters Fs

0,
Fa
0 , etc. [27]. Indeed, in an isotropic Fermi-liquid metal the

electronic compressibility reads as

κel ¼
D�ðϵFÞ
1þ Fs

0

¼ 1

D�ðϵFÞ−1 þ fs0
; ð4Þ

where D�ðϵFÞ is the total quasiparticle (i.e., renormalized)
density of states at the Fermi energy and Fs

0 ¼ D�ðϵFÞfs0 is
the isotropic, spin-symmetricLandauparameter. FromEq. (3)
one can formally calculate the total density of quasiparticles,
nfðμÞ ¼

R
dϵDðϵÞnFðZϵþ λ − μÞ [wherenFðϵÞ is theFermi

function], and deriving this expression by respect to μ one
indeed finds at zero temperature the above expression for
the electronic compressibility with D�ðμÞ ¼ Dðμ0Þ=Z and
fs0 ¼ μ0ðdZ=dnÞ þ dλ=dn. Here, μ0ðnÞ is the chemical
potential for the noninteracting system with the same particle
density (μ0 ¼ 0 at half filling in our particle-hole symmetric
case), entering through the relation μ0 ¼ ðμ − λÞ=Z implied
by the Luttinger theorem that holds in our Fermi-liquid
framework [13]. Since for the compressibility to divergewhen
Z is finite (as we indeed find here) it must be Fs

0 < −1, and
thus fs0 at least negative, this last formula implies that dλ=dn
has to be negative, since μ0ðdZ=dnÞ is always positive
(indeed, Z diminishes upon approaching the half-filled
Mott insulator, so that its slope always has the sign of μ0).
This is confirmed numerically [13]: the compressibility
divergence always happens becausedλ=dn becomes negative
and larger in absolute value than D�ðϵFÞ−1 þ μ0ðdZ=dnÞ.
The last quantity is always small near the Mott insulator
(becauseZ andμ0 are small there, anddZ=dn is finite), but the
question remains of why dλ=dn < 0.
Indeed, the renormalization parameters Z and λ set,

respectively, the width and the position of the quasiparticle
band(s), compared to the noninteracting case. In particular,
in a doped Mott insulator λ places the quasiparticle band
above the charge gap in the so-called Hubbard band [28],
the range of the spectrum with delocalized excitations at
finite energy. The Hubbard band is centered around the
energy of the atomic charge excitation (e.g., U=2 in the
single-band case), and if its width is fixed one expects λ to
grow monotonically when shifting the quasiparticle band
within it, upon doping. It has, however, become clear
recently that the Hubbard bands can vary in width, for

at 

at 

µ

FIG. 2. Left-hand panel: The colored areas are the zones of
instability towards phase separation in the U-doping plane for the
2-, 3-, and 5-orbital models, with J=U ¼ 0.25. The low-U
frontier departs from the Mott transition point at half filling
(symbols). For a growing number of orbitals the unstable zone
extends to larger and larger doping, albeit narrowing in U. Right-
hand panel: A plausible mechanism by which Hund’s coupling
causes the charge instability. Hund’s coupling reduces the width
of the Hubbard bands at half filling, through the quenching of
orbital fluctuations. Upon doping the quenching is lifted and the
Hubbard bands are expected to expand (going from ∼W to some
larger value ~W). This makes it possible to have a lower chemical
potential at larger particle density, i.e., a charge instability.
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instance, among different models: in the absence of Hund’s
coupling, their width grows like

ffiffiffiffiffi
M

p
with the number of

orbitals [29], while it was shown that the onset of Hund’s
coupling J reduces their width back to values of the order of
the one-band model [24]. Indeed, J quenches the orbital
fluctuations responsible for the enhancement of the delo-
calization energy of the charge excitations, and hence of the
width of the Hubbard bands. This quenching is, however,
complete only at half filling, while the extra particles
introduced by doping necessarily create doubly occupied
orbitals, unquenching the orbital degrees of freedom. One
can then expect the Hubbard bands to expand again, when
doping the half-filled Mott insulator. This gives a plau-
sibility argument for the nonmonotonic behavior of λ
with n: if the Hubbard band expands quickly enough with
doping, it may happen that for a larger density n the
quasiparticle band is located at lower energy than for a
smaller n (see Fig. 2, right-hand panel), and, consequently,
μ can be lower for the larger n, causing the negative
compressibility that we find.
Incidentally, the mechanism reducing the width of the

Hubbard bands was shown to coincide [24] with the one
causing the “orbital decoupling” (i.e., the suppression of
interorbital charge-charge correlations) leading to the
selective Mott physics that one finds in these models once
the degeneracy of the bands is removed [2,30]. It is not
surprising then to find the divergence of the compressibility
on the frontier of the crossover towards the orbitally
decoupled region.
It is worth stressing that the proximity to such a Fermi-

liquid instability has several remarkable consequences [12].
Indeed, a negative Fs

0 implies an attractive interaction
between quasiparticles in the particle-hole channel, at
q ¼ 0, ω → 0. This in general favors superconductivity
[31], and critical fluctuations of the order parameter might
even directly provide the pairing [32]. But the interaction
of quasiparticles with low-energy bosons can also be
enhanced. Indeed, Ward identities relate the quasiparticle
interaction vertices with the Fermi-liquid parameters.
For instance, for the density vertex Λðq;ωÞ, the following
Ward identity holds [33]:

ZΛðq → 0;ω ¼ 0Þ ¼ 1

1þ Fs
0

: ð5Þ

This implies an enhancement of this interaction vertex, if
1þ Fs

0 decreases until vanishing, as in the present case (for
a complete plot of 1þ Fs

0 in the 2-orbital model with
J=U ¼ 0.25, see the Supplemental Material [13]). In turn,
the enhancement of the vertex can favor a symmetry
breaking, if a related susceptibility is correspondingly
enhanced.
It is tempting to attribute to these effects the enhance-

ment of a number of instabilities of the paramagnetic
metallic phase in materials that are dominated by Hund’s

many-body physics [1]. Most notably one might speculate
that, whatever the mechanism leading to superconductivity
in iron-based superconductors, the enhancement of the
critical temperature be due to the Fermi-liquid compress-
ibility enhancement outlined in this Letter. Indeed, when
modeling doped BaFe2As2 with density functional theory
(DFT) + slave spin, one finds confirmation that the phase
separation instability is realized also in this realistic
framework, emanates from the half-filled Mott insulator,
and reaches the zones in the phase diagram relevant to the
iron-based superconductors, as shown in Fig. 3.
Remarkably indeed, using the set of interaction parameters
(U ¼ 2.7 eV, J=U ¼ 0.25) that yields the correct
Sommerfeld coefficient for all of the 122 family [24,34]
one finds that the compressibility is greatly enhanced in the
density range 5.75–6.1, coinciding with the zone where
doped BaFe2As2 shows high-Tc superconductivity in the
tetragonal phase.
Recently, Misawa and Imada [35] have highlighted a

zone of phase separation, in the ab initio phase diagram of
LaFeAsO [36] studied within a variational Monte Carlo
scheme, in proximity of the superconducting phase. The
zone of phase separation is compatible with the corre-
sponding zone we find in the present study and with its
continuation in terms of enhanced compressibility. What
we highlight in the present work is that this phase is a
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FIG. 3. Lower left-hand panel: Compressibility (color scale) in
BaFe2As2 calculated within DFTþ SSMF (J=U ¼ 0.25) in the
U-density plane. The saturated yellow color corresponds to the
unstable region (the pixelation is due to numerical discretization
and is unphysical), surrounded by an area of enhanced com-
pressibility (red). Upper panels: Compressibility plotted along the
cuts (dashed lines) for constant U ¼ 2.7 eV and constant density
n ¼ 6, relevant values for BaFe2As2. Lower right-hand panel:
Orbitally resolved mass enhancements, showing that the com-
pressibility enhancement happens near the crossover, where
correlations become orbitally selective.
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genuine instability of the Fermi-liquid phase even in the
absence of all symmetry breaking, it is to be tracked back to
Hund’s coupling, and it is a universal feature of all Hund’s
dominated doped half-filled Mott insulators.
Analogously to the model studies, we find that in

BaFe2As2 the instability zone and the zone of enhanced
compressibility that continues it is located on the crossover
frontier between the normal and the orbitally decoupled
(Hund’s) metal (Fig. 3, right-hand panels). We suggest that,
in general, an enhancement of the compressibility, with the
possible related enhancement of superconductive pairing,
happenswhenamaterial is near the frontier between a normal
metal and a Hund’s metal. A possible universally detectable
sign of this situation is the arising of high-Tc superconduc-
tivity in between a phase with (orbitally) selective electronic
correlation strength and another, more conventional metallic
phase, as it also happens in cuprates [6].
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