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Supersymmetric (SUSY) gauge theories such as the minimal supersymmetric standard model play a
fundamental role in modern particle physics, but have not been verified so far in nature. Here, we show that
a SUSY gauge theory with dynamical gauge bosons and fermionic gauginos emerges naturally at the pair-
density-wave (PDW) quantum phase transition on the surface of a correlated topological insulator hosting
three Dirac cones, such as the topological Kondo insulator SmB6. At the quantum tricritical point between
the surface Dirac semimetal and nematic PDW phases, three massless bosonic Cooper pair fields emerge as
the superpartners of three massless surface Dirac fermions. The resulting low-energy effective theory is the
supersymmetric XYZ model, which is dual by mirror symmetry to N ¼ 2 supersymmetric quantum
electrodynamics in 2þ 1 dimensions, providing a first example of emergent supersymmetric gauge theory
in condensed matter systems. Supersymmetry allows us to determine certain critical exponents and the
optical conductivity of the surface states at the strongly coupled tricritical point exactly, which may be
measured in future experiments.
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Spacetime supersymmetry (SUSY) was introduced more
than forty years ago as a means to resolve fundamental
issues in particle physics such as the hierarchy problem
[1–4], but has not been discovered yet. Amazingly, many
beautiful theories originating in high-energy physics may
be realized and tested in condensed matter systems; for
instance, 3DWeyl fermions [5–7] were discovered recently
in solid state materials [8–12]. One may wonder whether
SUSY can be realized in quantum materials. Indeed, it was
proposed that SUSY can emerge at quantum criticality in
Bose-Fermi lattice models [13,14] and at the boundary of
topological materials [15–18], as well as at multicritical
points in low-dimensional systems [19–21]. Further, it was
shown in Ref. [22] that SUSY in 3þ 1D can emerge at
superconducting quantum critical points in ideal Weyl
semimetals [23,24].
However, all known examples only realize the simplest

type of emergent SUSY: the Wess-Zumino theory [3],
which contains a single SUSY multiplet of matter fields
(one scalar and one fermion). It is highly desirable to know
whether richer types of SUSY can emerge in condensed
matter systems, such as theories with dynamical gauge
fields. Here, we theoretically show that the nematic pair-
density-wave (PDW) tricritical point on the surface of a
correlated topological insulator (TI) [25,26] with three
Dirac cones can realize a SUSY gauge theory. At this
tricritical point, three Dirac fermions and three complex
bosons form mutual superpartners and are described by the
so-called XYZ model [27], which is dual by mirror
symmetry to N ¼ 2 supersymmetric quantum electrody-
namics (SQED) [28–30].

An ideal candidate correlated TI to possibly realize this
new type of SUSY is SmB6, which is proposed to be a
topological Kondo insulator [31,32] with three degenerate
Dirac cones on its (111) surface protected by time-reversal
and crystal symmetries [33,34]. (Another candidate with
similar properties is YbB6 [35].) Experiments on surface
electronic structure [36–38], transport properties [39,40], and
quantum oscillations [41,42] in SmB6 all indicate conducting
surface Dirac cones but an insulating bulk. To realize three
complex bosons as superpartners of the three surface Dirac
fermions, we consider the surface quantum phase transition
into a PDW phase with three complex order parameters.
From the effective theory describing the PDW transition

on the TI surface hosting three Dirac cones, we analyze the
possible phases of the model at the mean-field level and
find two PDW phases distinguished by the lattice rotational
symmetry. In the nematic PDW phase, which breaks
rotational symmetry spontaneously, there is a tricritical
point separating first- and second-order PDW phase tran-
sitions. A renormalization group (RG) analysis reveals that
the SUSY XYZ model, and thus,N ¼ 2 SQED, emerges at
this tricritical point. To the best of our knowledge, this is the
first example of emergent SQED in quantum materials. We
calculate certain critical exponents and the optical conduc-
tivity of the surface states exactly, which may be tested in
future experiments on correlated TIs with PDW transitions.
Effective field theory.—The hexagonal surface Brillouin

zone (BZ) of a TI with C3 symmetry (e.g., Bi2Se3
and SmB6) contains four time-reversal invariant (TRI)
points: the Γ̄ point, and three M̄ points related by symmetry
[Fig. 1(a)]. There are two different types of surface states: a
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single Dirac cone at the Γ̄ point, as on the (001) surface of
Bi2Te3 and Bi2Se3 [25,26], or three Dirac cones at the M̄
points, as on the (111) surface of SmB6 [33,34] and YbB6

[35]. Here, we consider the latter case. We further impose
the reflection symmetry Mx (x → −x) which is respected
in SmB6. As a result, the TI surface has C3v symmetry. The
three Dirac fermions located at these TRI points are
denoted by ψ1;2;3 [Fig. 1(a)]. The little group for ψ1 is
generated by time reversal T and reflection Mx. The low-
energy theory of the surface Dirac semimetal (DSM) is
dictated by symmetry and given by

Lf ¼
X3

i¼1

ψ†
i ð∂τ þ hfi Þψ i; ð1Þ

where τ is imaginary time and hf1 ¼ −iσyvx∂x þ iσxvy∂y is
a Dirac-like Hamiltonian with vi the fermion velocities and
σi the Pauli spin matrices; hf2 and hf3 are obtained from hf1
by rotations [43]. Though there is no symmetry to enforce
vx ¼ vy, velocity isotropy emerges at the PDW transitions
discussed below. We assume that the chemical potential
is exactly at the Dirac points, namely, at stoichiometry.
By contrast with the (111) surface considered here, on the
(001) surface of SmB6 the three Dirac points are not at
equal energy [44].
We consider the system near PDW criticality, where

pairing is between different cones and the PDW order
parameters are, e.g., ϕ1 ∝ ψ2σ

yψ3 [Fig. 1(a)]. PDW order-
ing possesses finite momentum but does not spontaneously
break time-reversal symmetry [45–49]. The quantum
Landau-Ginzburg Lagrangian for the PDW order parame-
ters is constrained by symmetry and reads [43]

Lb ¼
X3

i¼1

ϕ�
i ð−∂2

τ þ hbi Þϕi þ Vb; ð2Þ

Vb ¼ r
X3

i¼1

jϕij2þuðjϕ1j2jϕ2j2þ c:p:Þ

þu0½ðϕ�2
1 ϕ2

2þH:c:Þþ c:p:� þu00
X3

i¼1

jϕij4; ð3Þ

where r, u, u0, u00 are phenomenological constants, c.p.
denotes cyclic permutations, and hb2 , h

b
3 can be obtained

from hb1 ¼ −c2x∂2
x − c2y∂2

y by rotations. Terms linear in
spatial derivatives are forbidden due to time-reversal
symmetry (we also implicitly assumed particle-hole sym-
metry to rule out terms linear in time derivative), and higher
order terms omitted in Lb are irrelevant in the RG sense.
Boson and fermion velocities are initially different, but
flow to a common value in the infrared as discussed later in
the text. Hereafter, we assume u0 < 0 since the Josephson
coupling between different condensates normally mini-
mizes their superconducting phase difference. Moreover,
the Dirac fermions and PDW order parameter fluctuations
are coupled

Lbf ¼ gðϕ1ψ2σ
yψ3 þ c:p:Þ þ H:c:; ð4Þ

where g is a coupling constant.
Mean-field analysis.—To facilitate the analysis of the

possible PDW phases at the mean-field level, we rewrite the
boson potential as

Vb ¼ u00
�X3

i¼1

jϕij2
�2

þðu− 2u00Þðjϕ1j2jϕ2j2þ c:p:Þ; ð5Þ

where we have implicitly absorbed the u0 term into the u
term (i.e., uþ 2u0 → u) because the phase differences
between different condensates (Leggett modes) are gapped
in the ordered phase [50]. For now, we neglect the Dirac
fermions in the lowest order approximation. The sign of the
second (anisotropic) term in Eq. (5) is crucial for determin-
ing which PDW ground state is preferred. In the PDW
ordered phases, the mass term is negative r < 0. When
u − 2u00 < 0 and uþ u00 > 0, the anisotropic term in the
potential favors the ordering jϕij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijrj=2ðuþ u00Þp
and

ϕ1 ¼ ϕ2 ¼ ϕ3, which we denote the isotropic PDW
(IPDW) phase because it preserves the crystalline C3v
symmetry. In the IPDW phase, all three surface Dirac
fermions are gapped by pairing. On the other hand,
u − 2u00 > 0 and u00 > 0 favors a qualitatively different
type of PDWordering: only one component condenses with
jϕij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijrj=2u00p
while the other two ϕj≠i vanish. We call

this phase the nematic PDW (NPDW) because it breaksC3v
spontaneously. There is no secondary charge-density-wave
order formed in the NPDW phase. In the NPDW phase,
only two Dirac points are gapped and one remains mass-
less. For the special case u ¼ 2u00, the theory describes a

FIG. 1. (a) Hexagonal surface Brillouin zone of a TI with three
Dirac cones ψ1, ψ2, and ψ3, as in SmB6. The three intervalley
PDW order parameters are labeled by ϕ1, ϕ2, and ϕ3, which can
be rotated into Dirac fermions by a SUSY transformation at the
nematic PDW tricritical point. (b) Schematic quantum phase
diagram. U1, U2 represent combinations of the couplings r, u, u0,
u00 in the Landau-Ginzburg theory (3). Solid (dashed) lines
represent second- (first-) order transitions. The red circle repre-
sents the tricritical point between the Dirac SM and nematic PDW
phases, where SUSY of the XYZ=SQED type emerges.
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bicritical point where the DSM-IPDW and DSM-NPDW
phase boundaries meet [Fig. 1(b)].
In the analysis above, we have implicitly assumed that

the transition between the DSM and PDW phases is
continuous. However, it is always possible for a transition
to be discontinuous. Thus, we also consider the possibility
of first-order PDW transitions as well as tricritical points
between the first- and second-order transitions. The tran-
sition into the nematic PDW phase (i.e., u − 2u00 > 0)
should be first-order when u00 < 0, in which case a
sixth-order term like wðP3

i¼1 jϕij2Þ3 with w > 0 should
be added to Vb to stabilize the free energy. u00 ¼ 0 is, thus,
a tricritical point between the continuous (u00 > 0) and
first-order (u00 < 0) transitions into the nematic PDW phase
[Fig. 1(b)]. Similarly, uþ u00 ¼ 0 describes a tricritical
point between the continuous transition (uþ u00 > 0) and
the first-order transition (u00 þ u < 0) into the isotropic
PDW phase.
We have identified three multicritical points through the

mean-field analysis above: one bicritical, and two tricrit-
ical. In the remainder of the Letter, we analyze the emergent
low-energy, long-wavelength properties at these multicrit-
ical points. Remarkably, the tricritical point into the
nematic PDW phase features an emergent SUSY of the
XYZ=SQED type, as discussed below.
Effective theory of the bicritical point.—First, we explore

universal properties of the continuous DSM-PDW transi-
tion (i.e., r ¼ 0) via a one-loop RG analysis in 4 − ϵ
spacetime dimensions (the physical dimension corresponds
to ϵ ¼ 1) [43]. At this transition, we find that the anisotropy
in fermion and boson velocities vanishes, i.e., cx ¼ cy ≡ c
and vx ¼ vy ≡ v at low energies and long distances.
Moreover, they flow to a common value c ¼ v in the
infrared such that Lorentz symmetry emerges at the con-
tinuous PDW transition, no matter whether the PDW phase
is isotropic or nematic. Even though emergent Lorentz
symmetry was previously observed at various quantum
critical points involving Dirac fermions [22,51–54], it is
more exotic here because it involves an odd number of Dirac
cones on the surface of a correlated TI. This emergent
Lorentz symmetry allows us to set c ¼ v ¼ 1 in discussing
the PDW quantum critical points.
From the RG equations for the coupling constants g, u,

u0, u00,

dg2

dl
¼ ϵg2 −

3π

2
g4;

du
dl

¼ ϵu − πg2uþ πg4 −
π

2
ð3u2 þ 16u02 þ 8uu00Þ;

du0

dl
¼ ϵu0 − πg2u0 − πðu02 þ 2uu0 þ 2u0u00Þ;

du00

dl
¼ ϵu00 − πg2u00 þ π

2
g4 −

π

2
ðu2 þ 4u02 þ 10u002Þ;

we find a unique stable fixed point at g2st ¼ ð2=3πÞϵ,
u0st ¼ 0, and ust ¼ 2u00st ¼ ð1þ ffiffiffiffiffi

57
p

=21πÞϵ, where the sub-
script “st” means “stable." At this stable fixed point, the
boson potential becomes Vb ¼ u00stð

P
3
i¼1 jϕij2Þ2 and has an

emergent SO(6) symmetry. However, the full theory only
has the reduced Uð1Þ × C3v symmetry due to the finite
fermion-boson coupling gst.
Based on our earlier analysis, the fixed point with

ust − 2u00st ¼ 0 corresponds to a bicritical point where three
phases (DSM, IPDW, and NPDW) meet. However,
this multicritical point is a novel one as it has only one
relevant direction (the mass term r). The term proportional
to u − 2u00 in Eq. (5) is dangerously irrelevant, and ground
states on the ordered side crucially depend on its sign.
Emergent XYZ/SQED at the NPDW tricritical point.—

Besides the stable fixed point discussed above, the RG
equations also support another (unstable) fixed point at
g2susy ¼ ususy ¼ 2

3π ϵ and u0susy ¼ u00susy ¼ 0. The fixed point
action is invariant under the SUSY transformations δϕi ¼ffiffiffi
2

p
ξψ i, δψ1 ¼ i

ffiffiffi
2

p
σμξ̄∂μϕ1 þ g

ffiffiffi
2

p
ξϕ2ϕ3, and δψ2;3 are

obtained by permutations of δψ1, where the infinitesimal
transformation parameters ξ, ξ̄ are Grassmann-valued
two-component spinors, and σ0 ¼ −I with I the identity
matrix.
Remarkably, this fixed point is described by a new type

of SUSY qualitatively different from all previously pre-
dicted in condensed matter. The bosonic PDW fields ϕi and
Dirac fermions ψ i combine into three chiral superfields
Φi ¼ ϕi þ

ffiffiffi
2

p
θασyαβψ

β
i þ � � �, i ¼ 1; 2; 3, where θ is a

Grassmann-valued two-component spinor and α, β are
(pesudo-)spin indices. Intravalley pairing would have
resulted in three decoupled copies of the N ¼ 2 Wess-
Zumino theory with superpotential Φ3

i studied previously
[13–17,22]. By contrast, in the intervalley pairing scenario
considered here, the three valleys are strongly coupled via
the superpotential Φ1Φ2Φ3 [43], and the resulting theory is
known as the XYZ model. It flows in the infrared to a
strongly coupled fixed point, which is dual via mirror
symmetry—a SUSY version of the Peskin-Dasgupta-
Halperin or particle-vortex duality [55–57]—to the infrared
fixed point of N ¼ 2 SQED [28–30]. The latter is a theory
of a vector superfield V and two chiral superfields Q, ~Q,
playing the role of gauge field and matter field in the
“vortex” theory, respectively. In addition to an emergent
bosonic gauge field Aμ, the vector superfield V also
contains a fermionic gaugino λ.
We now show that the XYZ=SQED fixed point with u0 ¼

u00 ¼ 0 and u > 0 corresponds to the tricritical point that
separates the continuous and first-order transitions into the
nematic PDW phase. Linearizing the RG equations for g, u,
u0, u00 near the SUSY fixed point, we can determine the
eigenoperators at this fixed point and their eigenvalues,
which are (− 7

3
, −1, −1, 1). The positive eigenvalue

indicates that there is one relevant direction (besides the
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relevant direction of r). Consequently, the XYZ=SQED
fixed point is unstable. This is consistent with our mean-
field analysis of the tricritical point on the transition
boundary between the DSM and NPDW phases, which
is reached by tuning two parameters.
The emergence at the NPDW tricritical point of the XYZ

SUSY, which is dual to SQED, may be intuitively under-
stood as follows. Heuristically, for a fermionic quantum
critical point with the same number of Dirac fermions and
complex order parameters to be possibly supersymmetric,
one necessary condition is that the coupling among differ-
ent bosonic order parameters should avoid flowing to
infinity (namely, it should not be relevant), otherwise,
the number of remaining effective gapless bosonic modes
would be less than the number of fermionic ones. The
nematic PDW breaks the Uð1Þ gauge symmetry, as well as
the lattice C3 symmetry which is effectively a Uð1Þ
symmetry at criticality due to the irrelevance of anisotropic
terms. Thus, from a symmetry point of view, it is natural to
expect two gapless complex bosonic modes at a generic
NPDW quantum critical point. However, the low-energy
theory has three gapless Dirac fermions. To have a chance
of being supersymmetric, the quantum phase transition
must be tuned to a multicritical point such that a third
complex bosonic mode remains gapless. Here, this multi-
critical point is the NPDW tricritical point.
Like the Wess-Zumino model, the XYZ model enjoys an

R symmetry [1,28]. The R charge of the superpotential
Φ1Φ2Φ3 should be 2, i.e.,

P
3
i¼1 RðΦiÞ ¼ 2, where RðΦiÞ

denotes the R charge of the superfield Φi. The assignment
of R charge for the superfield Φi is simple owing to the
rotational symmetry in our case: they should be equal,
RðΦiÞ ¼ 2

3
. For a chiral superfield, the scaling dimension is

exactly equal to the R charge [28,58] in 2þ 1 dimensions.
Thus, we obtain the exact scaling dimensions of the
bosonic order parameter fluctuations and Dirac fermions
as Δϕ ¼ 2

3
and Δψ ¼ Δϕ þ 1

2
¼ 7

6
, respectively. Setting

ϵ ¼ 1, our one-loop RG result Δϕ ¼ 1
2
þ ϵ

6
¼ 2

3
for the

boson scaling dimension is consistent with the exact result.
Accordingly, the order parameter anomalous dimension or
critical exponent η is 1

3
. On the other hand, the correlation

length exponent ν is related to the scaling dimension of
nonchiral fields jϕij2 and cannot be simply related to the R
charge. We obtain ν ¼ 1

2
þ ðϵ=4Þ þOðε2Þ at the one-loop

level [43].
Experimental signatures of SUSY at the NPDW tricrit-

ical point.—Owing to the strong constraints imposed by
N ¼ 2 superconformal symmetry at the XYZ=SQED fixed
point, several dynamical properties can be obtained exactly
[59,60] despite the presence of strong interactions at this
fixed point. According to linear response theory, the optical
conductivity at frequency ω is given by the current-current
correlation function

σðωÞ ¼ e2

ℏ
1

iω
hJxðωÞJxð−ωÞi; ð6Þ

where e2=ℏ is the quantum of conductance. The current-
current correlation function is highly constrained by con-
formal symmetry through the conformal Ward identity
[59,61].
We now compute the exact optical conductivity at the

NPDW tricritical point. Utilizing the R symmetry ofN ¼ 2
superconformal field theories in 2þ 1 dimensions, one can
find [60] that σ0ðωÞ ¼ 5

4
τRRðe2=ℏÞ, where σ0ðωÞ is the

optical conductivity at zero temperature and τRR is the
dimensionless coefficient of the two-point correlation
function of the R current [43,62–64]. Assuming ω ≪ Λ
where Λ represents microscopic energy scales above which
quantum critical behavior ceases to exist, the zero-
temperature optical conductivity σ0ðωÞ ¼ σ0 is a universal
constant independent of frequency that characterizes
the universality class of the transition, just like critical
exponents [65]. In an N ¼ 2 SUSY field theory with only
chiral superfields, τRR is given by an integral that depends
only on the R charge of the chiral superfields [59]. As
mentioned before, owing to the C3 rotational symmetry
relating the three chiral superfields Φi, we obtainRðΦiÞ ¼
2
3
, i ¼ 1; 2; 3. This is the same as the R charge of the chiral
superfield in the Wess-Zumino model [28]. As a result,
τRR at the XYZ=SQED fixed point is simply three times
that in the Wess-Zumino model, which was evaluated
analytically in Ref. [60]. Thus, the exact zero-temperature
optical conductivity at the nematic PDW tricritical point is
given by

σ0ðωÞ ¼
15

243

�
16 −

9
ffiffiffi
3

p

π

�
e2

ℏ
≈ 0.681

e2

ℏ
; ð7Þ

which may be tested in future experiments.
Other experimental signatures include various critical

exponents already mentioned, such as the fermion or boson
anomalous dimension η ¼ 1

3
, which is exact owing to

SUSY, and the correlation length exponent ν ≈ 0.75. The
exact value of η implies that the local electronic density of
states ρðωÞ scales as jωj4=3 at low energies [16], which can
be measured by scanning tunneling microscopy (STM).
Concluding remarks.—We have shown that a novel type

of SUSY emerges at the nematic PDW tricritical point on
the surface of a correlated TI that hosts three Dirac cones,
like SmB6. At this tricritical point, the three surface Dirac
fermions and three complex bosons (corresponding to
PDW order parameter fluctuations) are described by the
so-called XYZ model, which is dual in the low-energy and
long-wavelength limit to a SUSY gauge theory, N ¼ 2
SQED. As such, our result also provides a direct physical
setting for the investigation of mirror symmetry in con-
densed matter systems [66–68]. This is an area of increased
recent activity [69,70] owing to its connection with a series
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of recently proposed dualities in 2þ 1 dimensions [71–78],
with applications to a wide range of problems in contem-
porary condensed matter physics, such as quantum spin
liquids, topological phases, and the half-filled Landau level.
We have also predicted various critical exponents and the

zero-temperature optical conductivity at the nematic PDW
tricritical point, which could be tested in future experi-
ments. If the SUSY proposed in the present Letter is
realized in condensed matter systems, it would help to
determine various quantities nonperturbatively, such as the
critical exponent ν of SQED in 2þ 1 dimensions, which
are theoretically known only perturbatively (or numerically
by bootstrap calculations [79,80]). We hope the present
results will stimulate the theoretical and experimental
search for various types of emergent SUSY and,
more generally, emergent phenomena in condensed matter
systems [81].
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