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The exact nondipole Volkov solutions to the Schrödinger equation and Pauli equation are found, based
on which a strong field theory beyond the dipole approximation is built for describing the nondipole effects
in nonrelativistic laser driven electron dynamics. This theory is applied to investigate momentum partition
laws for multiphoton and tunneling ionization and explicitly shows that the complex interplay of a laser
field and Coulomb action may reverse the expected photoelectron momentum along the laser propagation
direction. The magnetic-spin coupling does not bring observable effects on the photoelectron momentum
distribution and can be neglected. Compared to the strong field approximation within the dipole
approximation, this theory works in a much wider range of laser parameters and lays a solid foundation
for describing nonrelativistic electron dynamics in both short wavelength and midinfrared regimes where
nondipole effects are unavoidable.
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Two kinds of processes are very fundamental in ultrafast
laser-atom and laser-molecule interactions, i.e., the depo-
sition of photon energies into atoms and molecules and the
transfer of photon linear momentum into targets. Plenty of
studies focused on the energy deposition and a series of
intriguing ultrafast phenomena were explored, such as
tunneling ionization [1], high harmonic generation and
its synthesization of attosecond light pulses [2], nonse-
quential double ionization [3], coherent control of electron
localization [4–7], and energy sharing between electrons
and nuclei [8]. For the second one, the transfer of photon
linear momentum attracts much less attention due to the
fact that a photon is not an effective momentum carrier as
compared to a nonrelativistic electron.
Thanks to the detection techniques with high resolutions

developed recently, Smeenk et al. [9] and Ludwig et al.
[10] reported that photoelectrons acquire a momentum shift
along the direction of laser propagation (termed as longi-
tudinal momentum shift in the rest of the Letter) during
tunneling ionization, and this photon momentum transfer is
also reported in the time-dependent Dirac equation simu-
lation [11], time-dependent Schrödinger equation (TDSE)
simulations [12,13], and classical trajectory Monte Carlo
calculations [14]. Some characters of the longitudinal
momentum shift [15–20] were explored by calculations
of strong field approximation (SFA). Though it is well
recognized that the longitudinal momentum shift must be
due to the nondipole laser-atom coupling, the exact non-
dipole Volkov solution was not built into these studies. To
circumvent this obstacle, some attempts have been tried.
Chelkowski et al. adopted the Volkov solution of the Klein-
Gordon equation in their SFA calculations [19]. Krajewska
et al. made an analogy with quantum electrodynamics in
obtaining the transition amplitude [21]. Cricchio and others

rewrote the space-time dependent laser vector potential as
Aðx; tÞ ≈AðtÞ þ ðz=cÞEðtÞ [18,22–24]. Here, AðtÞ and
EðtÞ are the dipole approximated laser vector potential
and laser electric field, and c is the light speed. To build a
self-consistent strong field theory beyond the dipole
approximation is still difficult because there is no exact
nondipole Volkov wave function to the Schrödinger equa-
tion until today, though the Volkov solution to the
Schrödinger equation within the dipole approximation
had been obtained around eighty years ago.
In this Letter, we analytically solved the TDSE for a free

electron in a monochromatic laser field and achieved the
exact nondipole Volkov solution. Based on this, we built
the nondipole SFA theory, which is then applied to
describing how the electron acquires the momentum along
the laser propagation direction, and how rescattering alters
the photon momentum partition between electrons and
nuclei. For very wide ranges of laser parameters, this
theory is self-consistent and is able to grasp the main
dynamics and offer intuitive physical explanations with
easy computations.
We used the light cone coordinate η ¼ t − ðz=cÞ to

describe the laser pulse by assuming it propagates along
the z axis. The components of the laser vector potential are
Aðr; tÞ ¼ AðηÞ ¼ (AxðηÞ; AyðηÞ; 0). The behavior of a free
electron embedded in such a laser field is described by the
TDSE as [atomic units (a.u.) are used unless stated
otherwise]

i
∂
∂tψVðr; tÞ ¼

1

2
f½p⊥ þA⊥ðηÞ�2 þ p2

zgψVðr; tÞ; ð1Þ

with p being the electron momentum operator. We con-
jectured that the Volkov solution of Eq. (1) has the form
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ψVðr; tÞ ¼ expð−iEptþ ip · rÞfðηÞ with Ep ¼ 1
2
p2 and

fðηÞ is temporarily unknown. Inserting the conjectured
ψVðr; tÞ into Eq. (1) yields the governed equation for fðηÞ

i

�
1 −

pz

c

�
f0ðηÞ ¼ HIðηÞfðηÞ −

1

2c2
f00ðηÞ; ð2Þ

with the interaction Hamiltonian HIðηÞ ¼ AðηÞ · pþ
1
2
A2ðηÞ. The solution of Eq. (2) is fðηÞ ¼ GðηÞf0ðηÞ with

f0ðηÞ¼expð−iR ηdξf½AðξÞ ·pþð1=2ÞA2ðξÞ�=ð1−pz=cÞgÞ
and GðηÞ¼TðexpfiR ηdξ½f�0ðξÞ d2

dξ2f0ðξÞ�=½2c2ð1−pz=cÞ�gÞ
with T being the ordering operator [25]. For any general
function FðξÞ,

T

�
exp

�
i
Z

η

ξ0

dξFðξÞ
��

¼ 1þ i
Z

η

ξ0

dξ1Fðξ1Þ

þ i2
Z

η

ξ0

dξ1Fðξ1Þ
�Z

ξ1

ξ0

dξ2Fðξ2Þ
�
þ � � � : ð3Þ

In the above expressions, the differential operator
acts on all the later terms, i.e., Fðξ1Þ½

R ξ1
ξ0
dξ2Fðξ2Þ�∼

ðd2=dξ21Þ½f0ðξ1Þ
R ξ1
ξ0
dξ2Fðξ2Þ�. The exact Volkov solution

beyond the dipole approximation is then achieved.
With the analytical expression of the nondipole Volkov

state, one may write down the transition amplitude beyond
the dipole approximation

Wð1ÞðpÞ ¼ −i
Z

tf

t0

dηG�ðηÞ½AðηÞ · pþ½A2ðηÞ�

× exp½iðSpðηÞ þ IpηÞ� ~ϕ0

�
p⊥; pz −

Ep þ Ip
c

�
;

ð4Þ

where SpðηÞ¼
R
ηdtfEpþ½AðtÞ·pþ1

2
A2ðtÞ�=½ð1−pz=cÞ�g is

the Volkov phase, and ~ϕ0ðpÞ ¼
R
dr expð−ip · rÞϕ0ðrÞ.

One may recognize that Eq. (4) changes into the dipole
transition amplitude as c → þ∞.
Since the Schrödinger equation is the nonrelativistic

version of the Klein-Gordon equation, by truncating the
terms at ∼ð1=c2Þ when expanding H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2c2

p
¼

mc2 þ ðp2=2mÞ þOð1=c2Þ, only the correction up to
Oð1=cÞ in our SFA theory should be anticipated after
considering the nondipole effect, and the correction higher
than the order ofOð1=cÞ is logically unnecessary. One may
note that f0ðηÞ is already corrected up toOð1=cÞ; thus, only
the leading term on the right-hand side of Eq. (3) is
important.
With the nondipole SFA, one may calculate the longi-

tudinal momentum shift induced by the nondipole

coupling. We treated the transition amplitude given by
Eq. (4) in different forms, for example, replacing the term
½1=ð1 − pz=cÞ� by 1þ ðpz=cÞ, or only keeping the leading
term of Eq. (4), i.e., GðηÞ → 1. The numerically calculated
expected values (denoted by hi) of longitudinal momenta
hpzi are summarized in Table I. The used laser pulse is
right-handed circularly polarized, and the intensity and
wavelength are 1014 W=cm2 and 1400 nm, and the initial
state is the ground state of a hydrogen atom. These laser
parameters are similar to those used in Refs. [9,19], and the
law hpzi ≈ ðhEpi þ 0.3IpÞ=c is reproduced, where hEpi is
the expected kinetic energy of the photoelectron. The
deviation of the exact result and approximated results is
within the order of ∼ð1=c2Þ, which is consistent with our
analysis. The simulation results confirm that taking the
leading term in the Dyson expression of GðηÞ will not
bring any observable error with the current experimental
detection resolution. Hence, in the later calculations, we
simply set GðηÞ ¼ 1 in the nondipole Volkov state. More
properties of GðηÞ are presented in the Supplemental
Material [26].
Gauge invariance is not preserved in the nondipole SFA.

In length gauge, with the same parameters used in Table I,
we reached hpzi ≈ ðhEpi þ 1

3
IpÞ=c [18]. Though the veloc-

ity gauge is more intuitive for describing results, the length
gauge is more quantitatively accurate in this research.
Actually, the SFA in the velocity gauge gives identical
photoelectron momentum distributions when the initial state
has opposite magnetic quantum numbers and the laser pulse
is circularly polarized, which contradicts the known facts
[29,30]. Thus, all subsequent numerical calculations are
carried out in length gauge in this Letter. With a unitary
phase transformation exp½iAðηÞ · x�, the transition amplitude
in the length gauge is obtained

Wð1Þ
L ðpÞ ¼ −i

Z
tf

t0

dη exp½iðSpðηÞ þ IpηÞ�
�
1 −

pz

c

�
EðηÞ

· i
∂
∂k ~ϕ0ðkÞjk¼½p⊥þAðηÞ;pz−ðEpþIpÞ=c�; ð5Þ

where EðηÞ ¼ −ð∂=∂tÞAðηÞ is the electric field.

TABLE I. The expected value of longitudinal momenta hpzi
calculated with different schemes. In these calculations, a wave-
length 1400 nm right-handed circularly polarized laser pulse with
the intensity 1014 W=cm2 is used and the target hydrogen atom is
in the ground state.

Calculation Schemes hpzi (a.u.)
Dipole approximation 0
Exact calculation 6.8 × 10−3

GðηÞ → 1 6.8 × 10−3

GðηÞ → 1 and ½1=ð1 − pz=cÞ� → 1þ pz
c 6.8 × 10−3

GðηÞ → 1 and ½1=ð1 − pz=cÞ� → 1 5.3 × 10−4
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As one of the application examples, we used the non-
dipole SFA theory to investigate the photon momenta
partition between nuclei and electrons. For an electron
initially in the ground state of the hydrogen atom
ðn; l; mÞ ¼ ð1; 0; 0Þ, applying Eq. (4) with the plane wave
laser for the single-photon ionization limit and the imagi-
nary time method [31] in the tunneling ionization limit
(where the electric field is treated as quasistatic and the
magnetic field is treated via perturbations), we obtained the
analytical formula

hpzis ¼
8

5

hEpi
cð1 − Up

ω Þ
−
Up

c
; hpzit ¼

hEpi þ Ip
c

; ð6Þ

where Up ¼ ½R T
0 dt 1

2
A2ðtÞ=T� is the ponderomotive

energy, i.e., the averaged quiver kinetic energy, and T
and ω are the optical period and frequency, respectively.
The omission of Up terms makes hpzis ¼ 8

5
ðhEpi=cÞ [19].

For the tunneling ionization, the first term of hpzit
originates from the classical electron electrodynamics in
the continuum and the second term of hpzit is contributed
by the under-the-barrier dynamics [32]. hpzit is affected by
the detail of the under-the-barrier dynamics [19,32], where
the laser intensity and electronic state play a role. More
details on the formula derivations and discussions can be
found in the Supplemental Material [26].
Between these two limiting cases, the expected longi-

tudinal momentum shift can be formulated as

hpzi ¼
αhEpi þ βIp þ γUp

c
; ð7Þ

where α, β, and γ are fitting parameters depending on
the absorbed photon number N, which is determined by
the floor function N ¼ ⌊Ip=ω⌋þ 1. To calibrate the
N-dependent α, β, and γ, we finely tuned the laser
frequency ω within ½Ip=N; Ip=ðN − 1Þ�, and fit hpzi
expressed by Eq. (7) to obtain α, β, and γ for a certain
N. Figure 1 shows the fitted α, β, and γ. Here, the laser
pulse is circularly polarized and its intensity is
1014 W=cm2. The initial state is the ground state of the
hydrogen atom. The fitted parameters α ¼ 1.6, β ¼ 0 for
N ¼ 1 are consistent with the analytical results. However,
in such a situation, hpzi ≈ 4 × 10−3 a:u:, while ðUp=cÞ ≈
4 × 10−6 a.u. is numerically too small to extract γ accu-
rately by the least squares fitting method adopted here.
Thus, in Fig. 1(c), we fit γ for N ≥ 4 where ðUp=cÞ is
relatively large and the extracted γ is reliable. With the
increasing of N, we observed the tendencies α → 1, γ → 0,
and β → 1

3
. The asymptotic value of β agrees with that

obtained in [32], where the short range potential was used.
To gain more insights into how the momentum is

partitioned in the tunneling regime, in Fig. 2(a), we plotted
hpzi as a function of the laser intensity when the electron is

initially in different states. The laser is right-handed
circularly polarized and the wavelength is 1400 nm. The
calculated intensity-dependent hpzi shares a similar shape
as that measured in Ref. [9]. When the intensity is larger
than 3 × 1013 W=cm2, α approaches 1 and γ approaches 0;
however, the varying β results in the deviation of the linear
relationship between hpzi and the laser intensity. The β
response can be more clearly seen in Fig. 2(b), where
Δpz ¼ hpzi − hEpi=c is plotted. It is clear that β ≈ 1

3
only

holds for the initial state ðn; l; mÞ ¼ ð1; 0; 0Þ in strong laser
pulses. This could be due to the fact that the electronic state
of ðn; l; mÞ ¼ ð1; 0; 0Þ is somehow close to the bound state
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FIG. 1. (a) The fitted (a) α, (b)β, and (c) γ as a function of the
absorbed photon number N. The laser intensity is fixed at
1014 W=cm2, and the initial electronic state is the hydrogen
ground state ðn; l; mÞ ¼ ð1; 0; 0Þ.
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FIG. 2. (a)hpzi and (b)Δpz as a function of the laser intensity.
The laser wavelength is 1400 nm and right-handed circularly
polarized. (a) and (b) share the same graph legend.
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of a short range potential. Our simulations also demonstrate
that the photon-momentum partition closely relates to the
initial angular momentum. It is also interesting to note that,
while curves of (2,1,1) and ð2; 1;−1Þ are different in
Fig. 2(a), they are overlapped in Fig. 2(b). This conclusion
also works for other ðn; l;�mÞ pairs.
The longitudinal momentum shift is more complicated if

the driving laser pulse is linearly polarized since the
rescattering occurs and the Coulomb potential plays an
important role. Thus, we extended the nondipole SFA
theory by including the Coulomb potential via the first-
order Born approximation [33]. Similarly, the transition
amplitude, after taking into account the Coulomb potential
in the nondipole SFA, is written as

Wð2ÞðpÞ ¼ ð−iÞ2
Z

tf

t0

dτ0
Z

τ0

t0

dτ
Z

d3k
ð2πÞ3

× hpVðτ0ÞjVcjkVðτ0ÞihkVðτÞjHIðτÞjϕ0ðτÞi; ð8Þ
where jkVi is the intermediate nondipole Volkov state, and
Vc is the Coulomb potential. After more arithmetic calcu-
lations, Eq. (8) changes into

Wð2ÞðpÞ ¼ ð−iÞ2
Z

d3k
ð2πÞ3

Z
tf

t0

dx1

Z
x1

t0

dx2HIðx2Þ

× exp fi½Spðx1Þ − Skðx1Þ þ Skðx2Þ þ Ipx2�g

× ~Vc

�
p⊥ − k⊥; pz − kz −

Ep − Ek

c

�

× ~ϕ0

�
k⊥; kz −

Ek þ Ip
c

�
; ð9Þ

where ~Vc ∝ 1=½ðp − kÞ2 þ σ� is the Fourier transformation
of Vc ¼ −ð1=jrjÞ expð− ffiffiffi

σ
p jrjÞ and σ is the screening

parameter for the Coulomb potential. Equation (9) is
identical to Eq. (8) in the sense that the contribution of
a finite target size is negligible [26]. The integration over
the intermediate nondipole Volkov state jkVi is carried out
via the steepest descents method with the saddle points
determined by ▿k½Skðx1Þ − Skðx2Þ� ¼ 0, which means the
integral of Eq. (9) is dominated by events that electrons
released at x2 come back to the nuclei at x1. The scaled
momentum distribution

R
dp⊥jWð1ÞðpÞ þWð2ÞðpÞj2 are

plotted in Fig. 3(a). The narrower momentum distribution
for smaller σ is due to the stronger Coulomb focusing
effect. Note that W ≈Wð1Þ þWð2Þ diverges for σ < 1 and
converges for σ ≥ 1, and thus, the curves for σ ¼ 0.1 and
0.01 deviate from real physics. The divergency could
possibly be cured by summing divergent terms into a
unitary phase [34].
We plotted hpzi as a function of the laser intensity by

including both the direct and rescattering ionization events
in Fig. 3(b). The laser field is linearly polarized and the
wavelength is 3400 nm, as used in the experiment [10].

Similar to Fig. 2(a), where the circularly polarized
laser pulse is used, the overall shift of the expected
longitudinal momentum increases with the increasing of
the laser intensity. Note that Fig. 3(b) presents hpzi while
Ref. [10] presented the peak offset of the photoelectron
longitudinal momentum distribution. The calculated peak
shift of the photoelectron longitudinal momentum distri-
bution as a function of the laser intensity is shown in the
Supplemental Material [26]. Figure 3(c) shows hpzi by
only including the rescattering events. We reminded that
the curves of σ < 1 do not express the physics correctly,
while the converged results of σ ¼ 1 or 2 clearly depict the
negative shift of hpzi induced by rescattering.
So far, the electronic spin dynamics is not touched. The

spin-magnetic coupling is in the order of Oð1=cÞ, the
same as the leading order of the electric nondipole
coupling. Thus, it is conceptually important to note that
the break down of the dipole approximation at the non-
relativistic regime also implies the break down of the spin-0
approximation for electrons. To study the nondipole effect
in photoionization more completely, we extended the
Schrödinger equation to the Pauli equation by including
the spin-magnetic coupling

i
∂
∂tϕðr; tÞ ¼

�
1

2
½pþAðηÞ�2 þ σ

2
· BðηÞ

�
ϕðr; tÞ; ð10Þ

where σ is the Pauli matrix and the magnetic field
BðηÞ ¼ ∇ ×AðηÞ. The solution to Eq. (10) is of the form

ϕp;ξðr; tÞ ¼ expð−iEptþ ip · rÞGMðηÞF0ðηÞuξ; ð11Þ
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FIG. 3. (a) The scaled longitudinal momentum distribution
when different screening parameters σ are used. (b) hpzi as a
function of the laser intensity, in which calculations, both the
direct and rescattering ionization events are included. (c) hpzi as a
function of the laser intensity, where only rescattering events are
taken into account. (a), (b), and (c) share the same graph legend.
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where F0ðηÞ ¼ exp
�

0
Aþ

A−
0

�
f0ðηÞ with A�ðηÞ ¼∓ ½AxðηÞ�

iAyðηÞ�=½2cð1 − pz=cÞ� and uξ stands for the spinor

basis
�
1
0

�
and

�
0
1

�
. The matrix function is GMðηÞ ¼

Tðexpfi R η dξ½F†
0ðξÞðd2=dξ2ÞF0ðξÞ�= ½2c2ð1 − pz =cÞ�gÞ.

Following same procedures applied for spin-0 particles,
one may obtain the transition amplitude containing the
spin-magnetic coupling. The longitudinal momenta hpzi
associated with different spin evolution channels are
summarized in Table II. The laser parameters are chosen
to be of wavelength 1400 nm, intensity 1014 W=cm2 and
right-handed circularly polarized. The probability of spin
flip is proportional to Iω2 with I being the intensity. For
parameters used in this Letter and recent published exper-
imental results [30], the probability of spin flip is signifi-
cantly smaller than that of spin preservation. One may
clearly see from Table II that the introduction of spin in the
photoionization does not bring much difference for the
longitudinal momentum shift.
In conclusion, the standard nondipole SFA theory, with

or without rescattering, is built based on the exact nondi-
pole Volkov wave function in nonrelativistic regimes. This
theory can quantitatively reproduce the experimentally
measured longitudinal momentum shift driven by linearly
and circularly polarized laser pulses and disentangle the
contributions of direct and rescattering ionization. Our
work could be further extended to study processes such
as high harmonic generations, nonsequential double ion-
ization, and electron holography when nondipole effects
are unavoidable. Thus, this work provides a solid founda-
tion for research of laser-matter interactions, especially for
the ultrafast processes triggered by strong midinfrared laser
pulses which are popularly used now.
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