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We present an exact single-electron picture that describes the correlated electron dynamics in strong laser
fields. Our approach is based on the factorization of the electronic wave function as a product of a marginal
and a conditional amplitude. The marginal amplitude, which depends only on one electronic coordinate and
yields the exact one-electron density and current density, obeys a time-dependent Schrödinger equation
with an effective time-dependent potential. The exact equations are used to derive an approximation that is
a step towards general and feasible ab initio single-electron calculations for molecules. The derivation also
sheds new light on the usual interpretation of the single-active electron approximation. From the study of
model systems, we find that the exact and approximate single-electron potentials for processes with
negligible two-electron ionization lead to qualitatively similar dynamics, but that the ionization barrier in
the exact single-electron potential may be explicitly time dependent.
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Molecules in strong laser fields are a fascinating field of
research. In such laser fields, it becomes possible to
experimentally monitor the electron dynamics in chemical
reactions on its natural time scale and in concert with the
nuclear dynamics. Recent experimental studies show that
parts of the electron dynamics can already be measured
[1–4].
With progress in experimental techniques comes the

necessity to develop and to improve theoretical tools to
analyze the experiments. Single-electron pictures have an
important role in this respect. The three-step model [5,6]
and its quantum version, the strong field approximation [7],
are single-electron models that describe the main mecha-
nism which is responsible for many of the observed effects.
Based on the success of these models, a single-active
electron (SAE) approximation [8] is often the basis for
quantum theories of strong field processes [9,10]. From
such investigations, general phenomena that may occur in
experiments can be deduced. However, there is no clear
understanding of why the SAE works and what its
limitations are, or even if it can be derived [11]. Thus, it
is highly desirable to investigate how far we can get with a
single-electron model.
Typically, in the SAE approximation, a time-dependent

Schrödinger equation

i∂tχ
SAEðr1; tÞ ¼

�
−
∂2
1

2
þ ϵSAEðr1Þ þ r1FðtÞ

�
χSAEðr1; tÞ;

ð1Þ

is solved for a single-electron wave function χSAE, and
observables are computed from this wave function [10,11].
Many-electron effects are approximated by an effective
time-independent potential ϵSAEðr1Þ, while the interaction
with the laser field may, e.g., be described in the dipole

approximation in the length gauge, as is done in (1).
The crucial information for the SAE is the effective
potential ϵSAE. While it may be possible to guess a model
potential for atoms, this is much harder for molecules
[9,12–14]. Nevertheless, hints that more general model
potentials can describe effects that seem to be beyond the
applicability of the SAE approximation have already
existed for a while [15–17].
In this Letter, we present an exact single-electron

description of a many-electron system in a laser field,
the exact electron factorization (EEF). The EEF is then
used to derive an approximation, the time-independent
conditional amplitude (TICA) approximation, that is for-
mally close to the SAE approximation (1) but has a
different interpretation: The SAE approximation assumes
that the processes to be described are essentially single-
electron processes and seems to treat all but one electron as
“frozen.” Hence, it is often assumed that it cannot describe
multielectron effects [18]. In contrast, the EEF and, also,
the TICA approximation represent the dynamics of all
electrons with an effective potential.
The EEF is a generalization of the exact (electron-

nuclear) factorization [19], which separates the nuclear
from the electronic system of a molecular wave function
exactly, to the case of electrons only. The idea of the EEF
was already given for static systems some time ago [20,21],
and aspects of it are also known in the field of density
functional theory [22–25]. With this Letter, we generalize
the EEF to time-dependent problems and show that it is
useful for developing the theory of attosecond experiments.
The derivation of a TICA approximation from the EEF
shows the assumptions that are made when an equation
such as (1) is used to represent the dynamics of all
electrons. Also, it yields a general procedure for obtaining
the TICA potential for any system.
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To make the ideas that follow as clear as possible, we
write the general equations using a simplified notation with
only two spatial coordinates, r1 and r2. In an n-electron
system, r1 and r2 stand for an arbitrary partitioning of
the coordinates of the electrons into two sets. The most
important case for our application is the case where r1
contains the coordinates of one electron and r2 contains the
coordinates of the remaining n − 1 electrons. This case is
assumed below. Also, we use atomic units and we do not
use explicit vector notation. The general equations are
given in the Supplemental Material [26].
We consider a nonrelativistic description of a molecule in

a laser field. In the dipole approximation in the length
gauge, the evolution of the system is described with the
time-dependent Schrödinger equation

i∂tΨ ¼
�
−
∂2
1

2
−
∂2
2

2
þ Vðr1; r2Þ þ ðr1 þ r2ÞFðtÞ

�
Ψ: ð2Þ

Here, Vðr1; r2Þ is the Coulomb interaction among the
electrons and of the electrons with clamped nuclei, and
FðtÞ is the time-dependent electric field. We note that, by
using the reverse factorization [27,28], (2) can be valid
without clamping the nuclei. However, then, V would be
time dependent and would not be a bare Coulomb potential.
The electronic wave function Ψðr1; r2; s1; s2jtÞ depends on
spatial coordinates rj and spin coordinates sj, which are, in
general, not separable, butΨðr1; r2; s1; s2jtÞmay always be
written as a sum of coordinate permutations of a unique
spatial wave function ψðr1; r2jtÞ, multiplied by a corre-
sponding spin function σðs1; s2Þ [29]. Below, we work
with the spatial wave function ψðr1; r2jtÞ alone which, for
our problem, has the same information content as
Ψðr1; r2; s1; s2jtÞ and which has a time evolution given
by the Schrödinger equation (2), too.
Next, we make the EEF ansatz

ψðr1; r2jtÞ ¼ χðr1jtÞϕðr2jr1; tÞ; ð3Þ

with partial normalization condition

hϕðr2jr1; tÞjϕðr2jr1; tÞi2¼! 1 ∀ r1; t; ð4Þ

where the notation h·i2 represents integration over all
coordinates r2. It automatically follows that

jχðr1jtÞj2 ¼ hψðr1; r2jtÞjψðr1; r2jtÞi2: ð5Þ

Given that jψðr1; r2jtÞj2 is normalized to one and has the
meaning of a joint probability density (it represents the
probability of finding one electron at r1 and the other
electrons at r2 given we are at time t), χ and ϕ also acquire a
special meaning: jχðr1jtÞj2 is the one-electron density or
marginal density (it represents the probability of finding an
electron at r1, given time t) and jϕðr2jr1; tÞj2 is the

conditional probability of finding n − 1 electrons at con-
figuration r2, given one electron is at r1 and given time t.
Hence, we call χ the marginal amplitude and ϕ the
conditional amplitude. We note that, if the number of
spin-up and spin-down electrons is not equal, there are two
different factorizations. An example is the three-electron
system discussed below.
A variational derivation of the equations of motion for χ

and ϕ yields

i∂tχ ¼
�½−i∂1 þ Aðr1; tÞ�2

2
þ ϵðr1; tÞ

�
χ; ð6Þ

for the marginal amplitude. This is a normal time-depen-
dent Schrödinger equation with a vector potential

Aðr1; tÞ ¼ Imhϕj∂1ϕi2; ð7Þ

and a scalar potential

ϵðr1; tÞ ¼ ϵT þ ϵV þ ϵF þ ϵFS þ ϵGD; ð8Þ

with average kinetic and potential energy of the other
electrons

ϵTðr1; tÞ þ ϵVðr1; tÞ ¼ hϕj − ∂2
2

2
þ Vjϕi2; ð9Þ

the electric field interaction with a modified dipole operator

ϵFðr1; tÞ ¼ FðtÞðr1 þ hϕjr2jϕi2Þ; ð10Þ

a Fubini-Study (FS) term

ϵFSðr1; tÞ ¼
1

2
h∂1ϕjð1 − jϕihϕjÞj∂1ϕi2; ð11Þ

and a gauge-dependent (GD) term

ϵGDðr1; tÞ ¼ Imhϕj∂tϕi2: ð12Þ

There is a gauge freedom in the choice of a phase Sðr1; tÞ,
because ~χ ¼ e−iSðr1;tÞχ and ~ϕ ¼ eiSðr1;tÞϕ yield the same
electronic wave function according to (3), and the
equations of motion stay invariant up to the change
~A ¼ Aþ ∂1S, ~ϵGD ¼ ϵGD þ ∂tS. The equation of motion
for the conditional amplitude ϕ is not of interest here and
can be found in the Supplemental Material [26].
The marginal amplitude χðr1jtÞ is an interesting quantity.

It yields the exact one-electron density, cf. (5), and it obeys
a time-dependent Schrödinger equation (6). Additionally, it
is straightforward to show that it also yields the exact one-
electron current density. From χ, all observables depending
on r1 and ∂1, most notably the dipole expectation value
(that yields, e.g., the high harmonic generation spectrum)
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and the momentum expectation value, can be obtained.
Hence, χ may also be called a one-electron wave function,
and it gives an exact single-electron picture of the dynam-
ics. However, the full problem does not, by itself, become
easier by making ansatz (3). The main problem, now, is to
obtain the scalar and vector potentials ϵ and A, which
depend on the conditional amplitude ϕ. Nevertheless, the
single-electron Schrödinger equation (6) gives us the
possibility to derive a single-electron approximation.
One way to derive a single-electron approximation of

the form (1) from the exact single-electron equation (6) is
to assume a time-independent conditional amplitude,

ϕðr2jr1; tÞ¼! ϕ0ðr2jr1Þ. Then, we obtain a time-independent
potential

ϵTICAðr1Þ ¼ ϵT ½ϕ0� þ ϵV ½ϕ0� þ ϵFS½ϕ0�: ð13Þ

Additionally, we choose the gaugeAðr1; tÞ ¼ 0, althoughwe
want to stress that similar to the exact electron-nuclear
factorization, cases are conceivable where this choice is
not possible and where a Berry phase may occur [30]. With
this choice of gauge, the only formal difference between the
TICA approximation and the SAE equation (1) is the change
of the dipole operator from r1 to dðr1Þ ¼ r1 þ hϕ0jr2jϕ0i2;
i.e., the equation of motion of the TICA approximation is

i∂tχ
TICA ¼

�
−
∂2
1

2
þ ϵTICAðr1Þ þ dðr1ÞFðtÞ

�
χTICA: ð14Þ

The formal similarity between (1) and (14) should not be
misunderstood: The TICA approximation does not assume
that there is one “active” electron and a frozen core but
approximates the exact single-electron density and current
density and, hence, the correlated dynamics of all electrons.
In contrast, the model potential and initial wave function
for a SAE calculation are typically chosen according to
the idea of treating only one electron, and observables are
calculated with both the active and the frozen part of the
electronic wave function.
A typical choice for ϕ0 is the conditional amplitude of

the state at t ¼ 0, which usually is an eigenstate of the
system. Then, to compute ϵTICA in practice, it is only
necessary to know the one-electron density ρðr1Þ of this
state, as ρðr1Þ ¼ jχTICAj2 at t ¼ 0, and to solve the time-
independent analogue of (14) for ϵTICA. The modified
dipole dðr1Þ can be obtained from the initial electronic
wave function. While, in our examples, dðr1Þ is of minor
importance, this may change when more electrons are
considered. To obtain the dynamics, it is only necessary to
solve the single-electron time-dependent Schrödinger equa-
tion (14), independent of the number of electrons in the
system. A discussion of a possible practical implementation
and its associated numerical cost is given in the
Supplemental Material [26].

To learn more about the exact and TICA potentials, we
consider one-dimensional models of the helium atom
(two electrons) and of the lithium atom (three electrons).
All solutions to the involved eigenvalue problems were
obtained with help of the linear algebra routines in the
SCIPY package [31,32]. The time propagation was per-
formed with the Gonoskov-Marklund propagator [33]
or a Runge-Kutta method. Details can be found in the
Supplemental Material [26].
For the Helium model, we choose, as the initial state, the

spin-singlet ground state and use the parameters of [34].
Our choice for ϕ0 is the conditional amplitude of the initial
state. The dynamics is computed for a 12-cycle laser pulse
with a wave length of 580 nm and a maximum intensity of
6.9 × 1014 W=cm2. By comparing the dynamics and the
high harmonic generation spectra [35], we found very good
agreement of the TICA calculations with the exact calcu-
lations, and the effect of the modified dipole operator is
almost negligible. A representative picture for the com-
parison of the exact single-electron potential ϵðr1; tÞ with
the TICA potential is shown in Fig. 1, and a movie, as well
as the spectra, are given in the Supplemental Material [26].
We see two important features that distinguish the exact

potential from the TICA potential: There are time-depen-
dent steps and spikes in the exact potential which are absent
in the TICA potential. The steps are similar to those known
from time-dependent density functional theory [16,36–38]
and are related to those from the exact electron nuclear
factorization [39]. They occur only at certain times and
positions, develop and disappear rapidly, and can only be
found in the gauge-dependent part ϵGD of the potential.
We do not have an intuitive interpretation for the steps in
the EEF, but we find that they have negligible effect on the
dynamics: They are located at positions with very low
electron density and the parts of the potential connected by

FIG. 1. Exact single-electron potential (8) (solid black line) and
TICA potential (13) with laser potential (dashed blue line) at a
time where the amplitude of the laser field is maximal, for the
one-dimensional two-electron model.
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steps are parallel. Hence, they change the momentum of
some parts of χ, but this does not result in an important
effect for the overall dynamics. The spikes also occur at
positions where the one-electron density is minimal. They
are a peculiar feature of the factorization ansatz: because
jχj2 is the one-electron density and this never becomes zero
in our systems, we do not have exact nodes unless we
impose them by a choice of the phase (which may lead to
discontinuities in χ). We found that, in the model propa-
gation, the spikes in the exact potential can be neglected for
the propagation of χ, which is equivalent to allowing the
marginal amplitude to become zero.
Next, we study a lithium model, a one-dimensional spin-

doublet model system with parameters taken from [40], for
an eight-cycle laser pulse with several laser frequencies
between 0.1 Ehℏ (152 nm) and 1.0 Ehℏ (46 nm), and with a
maximum intensity of 8.8 × 1013 W=cm2. The electronic
wave function is given by

Ψ ¼ N½ψðr1; r2; r3Þj↑↑↓i þ ψðr2; r3; r1Þj↑↓↑i
þ ψðr3; r1; r2Þj↓↑↑i�; ð15Þ

with the antisymmetry condition ψðr1; r2; r3Þ ¼
−ψðr2; r1; r3Þ for the spatial wave function. There are two
possible factorizations, one for the spin-up one-electron
density jχ↑ðr1jtÞj2 ¼ hψðr1; r2; r3Þjψðr1; r2; r3Þi23 and
one for the spin-down one-electron density jχ↓ðr3jtÞj2 ¼
hψðr1; r2; r3Þjψðr1; r2; r3Þi12. As we aim at describing
processes that mainly involve the valence electron, which
is a spin-up electron, we only consider the factorization
for χ↑.
Figure 2 shows a snapshot of the exact and TICA

potentials for the three-electron model system in the laser

fields, at a time where the electric field is maximal, in the
spatial region close to the nucleus. Movies of the dynamics
for different frequencies of the laser field are given in the
Supplemental Material [26]. Note that the TICA potential is
independent of the laser frequency, as it is a sum of the
initial exact potential and the laser interaction in dipole
form, cf. (14).
The initial potential shows a deep minimum, but also a

barrier to the left and to the right followed by shallow
minima. This reflects the electronic structure of the
problem. It also illustrates that, in contrast to the example
of the helium model, a suitable model potential for a SAE
calculation of a many-electron system is in general not easy
to guess and an ab inito treatment like the TICA approxi-
mation is recommended.
During the evolution, time-dependent spikes and steps

occur in the exact potential as in the two-electron case.
What is most striking, however, is the explicit time
dependence of the exact potential around the bounding
region: At times where the field is strong, the potential well,
located around r1 ¼ 0, becomes deeper, and the barriers at
its sides become higher. These changes become stronger
with a smaller frequency of the laser pulse. Interpreted in
terms of the three-step model, the effect of this additional
barrier is clear: It suppresses the tunneling out of the
bounding well and is an obstacle during the recombination
step. In contrast, the TICA potential does not show this
time-dependent barrier, which results in a similar qualita-
tive dynamics, but different quantitative results.
Further investigations of the contributions to the exact

potential show that this effect originates in the interaction of
the two spin-up electrons, while the effect of the contri-
butions of the spin-down electron to the exact potential is
small. We expect the time-dependent barrier to be partly a
consequence of the antisymmetry condition of the elec-
tronic wave function for the two spin-up electrons, which is
not met by the TICA: While the EEF is exact and preserves
symmetries of the full wave function, it does not reflect
those symmetries in the equations of motion. Consequently,
approximations to the EEF lead to a symmetry breaking,
which may be of minor importance, as in the two-electron
spin singlet case, but which we expect to be significant in
most cases, as in the three-electron spin doublet case.
Hence, it may be worthwhile to include symmetries of the
problems explicitly. Extensions like a repeated factoriza-
tion [41] or more symmetric factorizations need to be
explored in the future.
We also compared the TICA dynamics with a SAE

calculation based on the exact Kohn-Sham orbitals and
Kohn-Sham potential (obtained as explained in [37]). For
the model system, the SAE calculations are in relatively
good agreement with the exact dynamics and generally give
slightly better results than the TICA calculation for small
laser frequencies, but worse results for higher frequencies.
Details can be found in the Supplemental Material [26].

FIG. 2. Exact single-electron potential (8) (colored lines) for
different values of the laser frequency, and TICA potential (13)
with laser potential (black line) after half of the pulse, where the
amplitude of the laser field is maximal, for the one-dimensional
three-electron model.
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However, our choice for a SAE calculation is idealized
(using the exact Kohn-Sham potential) and modeling more
complex systems like molecules with a SAE approach need
further assumptions and approximations. Hence, the sig-
nificance of this comparison is so far limited.
In summary, from our investigations, we learned the

following: First, there is an exact single-electron theory,
the EEF, and it can be used to obtain a single-electron
approximation, the TICA approximation. The TICA
approximation is formally close to the typical SAE
approach, but it has a well-defined effective potential that
contains information of the electronic structure of the
system. A TICA calculation is feasible for relatively large
molecules, and it may be useful in situations where the
alignment of the molecule relative to the laser field matters.
Second, we found that a two-electron spin-singlet system
behaves similar to a one-electron system and that the shape
of the exact potential is simple to model, at least as long as
two-electron ionization is negligible. Hence, it is easy to
approximate, but its applicability as a model for many-
electron effects is limited. Third, we saw that, already for
the three-electron model system, an ab initio treatment like
the TICA approximation is necessary to obtain a potential
which includes all relevant features. Finally, it became clear
that the TICA approach is useful to compute qualitative
effects, again with the restriction of negligible two-electron
ionization. It does, however neglect a time-dependent
barrier that changes the ionization and recombination step.
This barrier, in turn, challenges our view on the three-step
model and shows the need for further studies.
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