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Radiative transition probabilities (A values) are computed for the Fe XVII L-shell lines in a Breit-Pauli
configuration-interaction method with the AUTOSTRUCTURE atomic structure code. It is shown that, by
carefully taking into account the fine-tuning of the relativistic coupling and 2p-orbital relaxation, the
measured A values of theM1 andM2 lines and, for the first time, the low fð3CÞ=fð3DÞ oscillator-strength
ratio are satisfactorily reproduced by the theory. The present ratio fð3CÞ=fð3DÞ ¼ 2.82 compares well
with the measurement of 2.61� 0.23 by x-ray laser spectroscopy.
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With the advent of the Chandra and XMM-Newton space
telescopes in 1999, the L-shell emission lines (n ¼ 3 → 2)
from 16-time ionized Fe XVII are regular and dominant
features in the x-ray spectra of a wide variety of hot
(1–7 MK) astronomical entities [1]. However, their plasma
diagnostic potential has been marred right from the outset
by stubborn mismatches in the spectral models, in particu-
lar, a weaker-than-predicted resonance line, which are
believed to be due to an inaccurate atomic structure [2].
A standing discrepancy between the experimental and
theoretical electron impact excitation cross sections has
also not been fully explained [3–5], but in any case,
electron correlation effects in the ionic targets have been
shown to be dominant [2,6]. The view on questionable
radiative rates has been reinforced by a recent laboratory
measurement of the leading oscillator-strength (f-value)
ratio using x-ray laser spectroscopy, which is 3.6σ lower
than hitherto numerous theoretical efforts (see [7] and
references therein). It is shown here for the first time that,
by both fine-tuning the relativistic coupling and including
orbital relaxation effects in the atomic model, the exper-
imental f-value ratio can be theoretically reproduced to
within the quoted uncertainty. Consequently, this accord
obviates the need to consider nonlinear dynamical model-
ing [8] or nonequilibrium plasma effects [9].
As specified in Fig. 1, the lines we are referring to arise

from the 2p53s and 2p53d excited configurations, and,
in a similar fashion to the He-like triplet [10], the attractive
diagnostic capabilities emerge from their quantum
mechanical diversity: 3C and 3G are electric dipole allowed
lines, the former being the resonance line; 3D, 3E, and 3F
are spin-forbidden electric dipole lines (intercombination
lines); and M1 and M2 are, respectively, magnetic dipole
and quadrupole forbidden lines. The radiative rates
(A values) of the latter two have beenmeasured in an electron
beam ion trap at AðM1Þ ¼ ð1.45� 0.15Þ × 104 s−1 [11]
and AðM2Þ ¼ ð2.04þ0.03

−0.09Þ × 105 s−1 [12], while the unex-
pectedly low experimental f-value ratio is fð3CÞ=fð3DÞ ¼
2.61� 0.23 [7].

The central theoretical issue in this controversy is the
well-known difficulty in obtaining accurate f values for
intercombination lines, not better exemplified than with the
systematic studies of the 1s22s2 1S0 − 1s22s2p 3Po

1 tran-
sition in the Be isoelectronic sequence [13–18], in par-
ticular, in the lowly ionized member C III. Among the many
details that need to be painstakingly addressed, the follow-
ing stand out: slowly convergent configuration-interaction
(CI) expansions to account for valence-valence and core-
valence (dipole polarizability of the 1s2 shell) correlations
that require single, double, and, in some cases, triple and
quadrupole excitations in electron configurations bearing
orbitals with a principal quantum number n ≤ 9 [13–18];
relativistic wave functions that undergo strong cancellation
effects that demand very precise level-energy separations
[16,18], in particular, ΔEð2s2p 3Po

1; 2s2p
1Po

1Þ, which in
some methods are attained only by small empirical energy
corrections in a procedure referred to as fine-tuning [14,19];
large differences between the length and velocity f-value
gauges that indicate wave functions far from their exact

FIG. 1. Fe XVII energy-level diagram (not drawn to scale)
showing the spectral lines of interest.
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form [16]; orbital relaxation effects whereby the 2p orbital
of the 3Po state appears to be more contracted than that of
the 1Po [15,16]; and theoretical A values for the C III

1909 Å intercombination line that lied consistently ∼20%
below a radio-frequency ion trap measurement [20], a
discrepancy that was finally resolved with a more precise
experimental result in an ion storage ring [21].
In the present computations of the Fe XVII L lines, we

follow the well-honed Be-sequence script with a Breit-Pauli
CI (BPCI) method examining each of the aforementioned
problems. CI wave functions of the type

ψ ¼
X

i

ciϕi ð1Þ

are determined with the AUTOSTRUCTURE atomic structure
code [22,23] using the Breit-Pauli Hamiltonian

Hbp ¼ Hnr þH1b þH2b; ð2Þ

where Hnr is the usual nonrelativistic Hamiltonian. The
one-body relativistic operator H1b represents the spin-orbit
interaction and the non-fine-structure mass-variation and
one-body Darwin corrections. The two-body Breit operator
H2b includes, on the one hand, the fine-structure spin-other-
orbit, mutual spin-orbit, and spin-spin terms and, on the
other, the non-fine-structure counterparts: spin-spin con-
tact; two-body Darwin; and orbit-orbit. The ϕi configura-
tion functions are built up from single-electron orbitals
PnlðrÞ constructed by diagonalizing Hnr with a statistical
Thomas-Fermi-Dirac-Amaldi model potential V½λðnlÞ�,
where the λðnlÞ scaling parameters are optimized varia-
tionally by minimizing suitable combinations of the LS
term energies [24].
Fine-tuning is implemented by means of term energy

corrections (TECs) [25,26], where the relativistic wave
function ψ iðRÞ is expressed as a perturbation expansion in
terms of the nonrelativistic functions ψ iðNRÞ:

ψ iðRÞ ¼ ψ iðNRÞ

þ
X

j≠i
ψ jðNRÞ ·

hψ jðNRÞjH1b þH2bjψ iðNRÞi
EiðNRÞ − EjðNRÞ

� � � ;

ð3Þ

the EiðNRÞ and EjðNRÞ being adjusted with empirical
TECs so as to compute the denominator of Eq. (3) with the
experimental energy difference.
Orbital relaxation effects are amply discussed in

Ref. [27], and, with regards to the Ne-like ions, they have
been studied in relation to the properties of K-vacancy
states in Fe XVII [28] and in the dielectronic recombination
of Mg III [29]. In AUTOSTRUCTURE the electron configu-
rations of a particular atomic model usually share a
common set of orthogonal orbitals, but orbital relaxation

can be introduced by assigning each configuration an
independent set of nonorthogonal orbitals for which the
overlap integrals are neglected [29]. The effects on the rates
due to the 2p-orbital relaxation that occurs in the transition
between the L-vacancy states and the spherically symmet-
ric, closed-shell ground state are thus examined.
The following four atomic models are considered in

order to study the impact of CI and orbital relaxation on the
radiative rates.
Mod1.—The ion is represented by electron configurations

displaying single and double excitations within the n ¼ 3

complex: 2s22p6; 2s22p5nl; 2s2p6nl; 2s22p4nlnl0;
2s2p5nlnl0, and 2p6nlnl0 with l ≤ 2 and l0 ≤ 2.
Orbitals are assumed orthogonal.
Mod2.—AsMod1plus electron configurations displaying

single and double excitations within the n ≤ 4 complexes:
2s22p5n0l; 2s2p6n0l; 2s22p4nln0l0; 2s2p5nln0l0, and
2p6nln0l0 with n0 ¼ 4, l ≤ 2 and l0 ≤ 2. Orbitals are
assumed orthogonal.
Mod3.—As Mod1 but with nonorthogonal orbitals.
Mod4.—As Mod3 but with independently optimized 2p

and 2p orbitals in the 2s22p6, 2s22p53s, and 2s22p
5
3d

configurations.
The λð1sÞ and λð2lÞ scaling parameters in Mod1 are

optimized by variationally minimizing the 1s22s22p6 1S
ground-state energy, while the λð3lÞ are obtained by
minimizing the energy sum of the spectroscopic terms of
1s22s22p53l with L ¼ 0 for even-parity and L < 4 for
odd-parity configurations. This scheme accounts for CI in
the wave functions of the ground level (J ¼ 0) and the
excited states of interest (J ≤ 2). In Mod2, the λð4lÞ with
l ≤ 2 are optimized on the energy sum of terms from
1s22s22p6 and 1s22s22p53l previously considered. The
resulting scaling parameters are listed in Table I.
For the levels shown in Fig. 1, ab initio computed

energies from Mod1 and Mod2 are compared with experi-
ment in Table II. The spectroscopic data have been derived
from recent wavelength measurements [11,30–32]. It is

TABLE I. Optimized orbital scaling parameters λðnlÞ.

λðnlÞ Mod1 Mod2 Mod4

1s 1.3837 1.3837 1.3837
2s 1.0699 1.0699 1.0699
2p 1.0051 1.0051 1.0051
3s 1.2600 1.2600 1.2600
3p 1.0990 1.0990 1.0990
3d 1.0875 1.0875 1.0875
4s 1.1732
4p 1.0740
4d 1.0758

2p 1.1100

2p 1.2400
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shown that the spectroscopic values are reproduced to
better than 4 eV with Mod1, while there are no significant
improvements with Mod2. A values are then calculated by
applying TECs and wavelength corrections, those obtained
with Mod1 and Mod2 being listed in Table III. The
agreement of these two approximations for the whole
transition array is within 5%, and with the experimental
M2 and M1 A values somewhat better (see Table IV).

As also given in Table IV, Mod1 yields fð3GÞ=fð3FÞ ¼
1.36 and fð3CÞ=fð3DÞ ¼ 3.75, which compare closely to
1.35 and 3.77, respectively, in Mod2. However, such
fð3CÞ=fð3DÞ theoretical predictions maintain the typical
(∼44%) discrepancy with the experiment.
Furthermore, for the electric dipole transitions (allowed

and intercombination), the f-value accord between the
length and velocity formulations is in both Mod1 andMod2
within 3% except for the 3F line, where it deteriorates,
though not unreasonably, to 12% and 9%, respectively. All
these results lead to the conclusion that the theoretical
fð3CÞ=fð3DÞ discrepancy with the experiment is not due
to a slowly convergent CI expansion.
Before testing the sensitivity of the radiative data to

orbital relaxation, we first examine the general outcome of
implementing an atomic basis of nonorthogonal orbitals,
namely, Mod3, by adopting the same configuration expan-
sion and scaling parameters as Mod1 (see Table I) but with
the orthogonality condition removed. It is seen in Table II
that, when the Mod3 level energies are compared with the
experiment, the discrepancies relative to those of Mod1
increase by a factor of 2–3. Also, as shown in Table III, the
A values for the whole transition array are significantly
higher in Mod3, in particular, for theM2 (43%), 3G (31%),
and 3F (51%) lines, and the f-value ratios do not change
much: fð3CÞ=fð3DÞ ¼ 4.11 and fð3GÞ=fð3FÞ ¼ 1.19.
Moreover, although the electric dipole length f values
increase accordingly with the A values, the velocity f
values remain close (⪅8%) to those of Mod1; therefore, the
good agreement of the f-value length-velocity gauges in
Mod1 and Mod2 is lost in Mod3.
In order to test orbital relaxation effects, we implement

the Mod4 model which is, in fact, similar to Mod3 (i.e., a
CI expansion spanning the n ¼ 3 complex with nonor-
thogonal orbitals), but now the λð2pÞ scaling parameter of
each of the 2p6, 2p53s, and 2p53d configurations is varied
independently. It is thus found that the A values are, in
general, sensitive to small changes of the scaling param-
eters, and, if the TECs are jointly implemented with a
judicious λð2pÞ selection, it is possible to reduce the

TABLE II. Comparison of experimental and present theoretical
level energies (eV) for Fe XVII. Experimental mislabels for some
levels have been corrected.

i Level Experimental Mod1 Mod2 Mod3 Mod4

1 2p6 1S0 000.00 000.00 000.00 000.00 000.00
2 2p53s 3Po

2 725.12a 727.84 727.71 732.75 726.42
3 2p53s 1Po

1 727.07a 729.79 729.64 734.82 728.46
4 2p53s 3Po

0 737.78a 740.01 739.94 744.66 739.06
5 2p53s 3Po

1 739.02a 741.26 741.17 746.01 740.37
6 2p53d 3Po

0 801.37b 804.17 804.49 808.62 803.31
7 2p53d 3Po

1 802.33c 805.13 805.45 809.57 804.28
8 2p53d 3Po

2 804.14b 806.96 807.30 811.41 806.11
9 2p53d 3Do

3 807.80b 810.79 811.16 815.32 809.70
10 2p53d 3Do

1 812.41d 815.60 815.90 820.15 814.61
11 2p53d 3Do

2 818.51b 820.87 821.23 825.11 821.02
12 2p53d 1Po

1 825.77d 829.92 829.97 834.81 829.02
aReference [11].
bReference [30].
cReference [31].
dReference [32].

TABLE III. Present A values (s−1) for the L lines of Fe XVII.

Id j i λ (Å) Mod1 Mod2 Mod3 Mod4

M2 2 1 17.099 2.10 × 105 2.12 × 105 3.01 × 105 2.04 × 105

3G 3 1 17.053 9.26 × 1011 9.44 × 1011 1.21 × 1012 9.07 × 1011

M1 4 3 1158.4 1.48 × 104 1.47 × 104 1.59 × 104 1.57 × 104

3F 5 1 16.777 7.03 × 1011 7.23 × 1011 1.06 × 1012 7.69 × 1011

3E 7 1 15.453 1.11 × 1011 1.06 × 1011 1.19 × 1011 1.31 × 1011

3D 10 1 15.261 6.34 × 1012 6.09 × 1012 6.77 × 1012 7.89 × 1012

3C 12 1 15.014 2.46 × 1013 2.37 × 1013 2.88 × 1013 2.30 × 1013

TABLE IV. Comparison of experimental and theoretical A values and f-value ratios for Fe XVII.

Parameter Experiment Mod1 Mod2 Mod4 Other recent theory

AðM2Þ (s−1) ð2.04þ0.03
−0.09 Þ × 105

a
2.10 × 105 2.12 × 105 2.04 × 105 2.06 × 105,c 2.08 × 105,d 2.06 × 105

e

AðM1Þ (s−1) ð1.45� 0.15Þ × 104
a

1.48 × 104 1.47 × 104 1.57 × 104 1.56 × 104,c 1.59 × 104,d 1.62 × 104,f 1.58 × 104,f 1.55 × 104
f

fð3GÞ=fð3FÞ 1.36 1.35 1.22 1.22,c 1.20,d 1.15g

fð3CÞ=fð3DÞ 2.61� 0.23b 3.75 3.77 2.82 3.48,c 3.56,d 3.50,g 3.96,h 3.74,h 3.68,h 3.44h

aElectron beam ion trap [11,12].
bX-ray laser spectroscopy [7].
cMBPT [33].
dMCDHF-RCI [34].
eFAC [12].
fMBPT and FAC [35].
gBPCI [36].
hMBPT and RCI [32].
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fð3CÞ=fð3DÞ ratio to the experimental value or even lower.
The basic question is then how to adopt 2p-orbital
optimization criteria with enough theoretical rigor such
that they can be applied to any member of the Ne
isoelectronic sequence. We must admit that in such a quest
the reported measurements of the Fe XVII M1 and M2 A
values and fð3CÞ=fð3DÞ ratio proved to be invaluable.
After much trial and error but always trying to comply

with the radiative data measurements, we arrived at the
conclusion that the prevailing 2p-orbital optimization
criterion follows that previously emphasized for the Be
sequence [15,19]: the accuracy of the terms

h2p53s 3Po
1jH1b þH2bj2p53s 1Po

1i
ΔEð2p53s 3Po

1; 2p
53s 1Po

1Þ
ð4Þ

and

h2p53d 3Do
1jH1b þH2bj2p53d 1Po

1i
ΔEð2p53d 3Do

1; 2p
53d 1Po

1Þ
ð5Þ

that regulate the intersystem relativistic mixing [see
Eq. (3)].
Recapitulating, in Mod4 the three spectroscopic con-

figurations 2p6, 2p53s, and 2p
5
3d now include two new

2p and 2p orbitals that are then optimized as follows:
(1) λð2pÞ is optimized by equating the theoretical energy
separation ΔEð2p53s 1Po

1; 2p
53s 3Po

1Þ to the spectroscopic

value; (2) λð2pÞ is optimized such that the theoretical

energy separation ΔEð2p5
3d 3Do

1; 2p
5
3d 1Po

1Þ is the

closest to the spectroscopic value, since, as shown in
Fig. 2, the curve goes through a higher minimum.

The optimized values of λð2pÞ and λð2pÞ are listed in
Table I. It must be noted that the 2p6 and 2p53s configu-
rations share a common 2p orbital, as it is found that, if they
are assumed independent, the optimized scaling parameters

are fairly close while, in contrast, the 2p orbital in 2p
5
3d is

definitely more diffuse. It may be appreciated in Fig. 2 that

the λð2pÞ optimization in the range 1.10 ≤ λð2pÞ ≤ 1.40

causes a variation of ΔEð2p5
3d 3Do

1; 2p
5
3d 1Po

1Þ of only
≲0.08 eV, and, hence, the spectroscopic separation of
13.36 eV is never reached. On the other hand, the effect
of this orbital variation on the fð3CÞ=fð3DÞ ratio once the
TECs are applied is remarkable: 2.3≲ fð3CÞ=fð3DÞ≲ 3.5.
Since the TECs are adjusted to the spectroscopic term
centroids, the discontinuities observed in fð3CÞ=fð3DÞ
(see Fig. 2) are a result of the corresponding changes in
the energies of the fine-structure levelswith J ¼ 2 and J ¼ 3
and provide a measure of the intricate level coupling of the
3 → 2 transition array in Fe XVII.
The resulting Mod4 level energies are listed in Table II,

finding significant improvements with respect to Mod3.
The A values obtained in Mod4 are given in Table III,
where it is shown that those for the M2, 3G, and 3F lines
are reduced by around 30% and for 3C by 20% with respect
to Mod3, while the M1 A value is hardly modified; those
for the 3E and 3D intercombination lines are, respectively,
increased by 10% and 17%. Moreover, it is found that the
length-velocity f-value agreement for the dipole lines is
fully restored in Mod4 to the Mod1 level: ∼2% except for
3F (8%).
The present Mod1, Mod2, and Mod4 radiative data are

compared in Table IV with the experiment and calculations
performed in the past decade using a variety of numerical
methods: relativistic CI [32]; the many-body perturbation
theory (MBPT) [32,33,35]; the flexible atomic code (FAC)
[12,35]; multiconfiguration Dirac-Hartree-Fock combined
with a relativistic CI method (MCDHF-RCI) [34]; and the
same BPCI method as the present [36]. The Mod4 M2 A
value is in very good agreement with both the experiment
and previous theoretical estimates; however, the Mod4 M1
A value is a little higher than the experiment (still within the
experimental uncertainty), Mod1, and Mod2 but in very
good accord with the other theoretical data. Mod1 and
Mod2 predict fð3GÞ=fð3FÞ ratios that are 10% higher than
the rest of the theoretical results. Lastly, only Mod4 yields a
fð3CÞ=fð3DÞ ratio in agreement with the experiment.
We have therefore demonstrated that it is possible to

reproduce the low experimental fð3CÞ=fð3DÞ ratio in Fe
XVII if detailed attention is given to the relativistic coupling
between levels with J ¼ 1 [see Eqs. (4) and (5)], which can
be achieved by jointly recurring to fine-tuning and an
orbital optimization scheme that primarily addresses the
precise representation of this coupling. Our best theoretical

1 1.1 1.2 1.3 1.4 1.5
14.40

14.45

14.50

ΔE
 (

eV
)

1 1.1 1.2 1.3 1.4 1.5
Scaling Parameter

2.00

2.50

3.00

3.50

f(
3C

)/
f(

3D
)

FIG. 2. ΔEð2p5
3d 3Do

1; 2p
5
3d 1Po

1Þ energy difference (top
panel) and fð3CÞ=fð3DÞ ratio (bottom panel) as a function of

the λð2pÞ scaling parameter. The spectroscopic value of ΔE ¼
13.36 eV is never reached, but the procedure allows an optimized

value of λð2pÞ ¼ 1.24 to be determined. fð3CÞ=fð3DÞ are
obtained after the TECs are applied, resulting in a value of
2.82 with the optimized scaling parameter.
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value of 2.82 is in agreement with the experimental value
of 2.61� 0.23 to within the error bars. We have also
devised a theoretical procedure that would enable the
treatment of these subtle effects in the calculation of more
reliable radiative data for other Ne-like ions without having
to rely on measurements (except the experimental level
energies needed for TECs), which in the present work were
of vital importance to actually master it.
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