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The helium atom is the simplest many-body electronic system provided by nature. The exact solution to
the Schrödinger equation is known for helium ground and excited states, and it represents a benchmark for
any many-body methodology. Here, we check the ab initio many-body GW approximation and the Bethe-
Salpeter equation (BSE) against the exact solution for helium. Starting from the Hartree-Fock method, we
show that the GW and the BSE yield impressively accurate results on excitation energies and oscillator
strength, systematically improving the time-dependent Hartree-Fock method. These findings suggest that
the accuracy of the BSE and GW approximations is not significantly limited by self-interaction and self-
screening problems even in this few electron limit. We further discuss our results in comparison to those
obtained by time-dependent density-functional theory.
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Introduction.—The solution of the Schrödinger equation
in interacting many-body systems is a formidable problem in
condensed matter and nuclear physics, as well as in quantum
chemistry. Startingwith theHartree-Fock (HF)method as one
of the first approaches to treat the quantum many-body
problem, different theoretical formalisms have been devel-
oped over time [1]: approaches relying on the many-body
wave function, like quantum Monte Carlo or quantum
chemistry methods, or on the electronic density, like density-
functional theory (DFT) in its static or time-dependent
(TDDFT) form or, finally, quantum field theoretical, Green
function based methods.While exact in principle, all of these
methods rely in practical calculations on approximations and
recipes whose validity are difficult to judge.
The GW approximation [2–6] and Bethe-Salpeter equa-

tion (BSE) [7–9] are ab initio approaches to calculate the
electronic structure within many-body Green function
theory. The GW approximation of the self-energy was first
applied to the homogeneous electron gas or jellium model
[2] and later extended to real solids [3,5,6] and molecules
[10–12]. The Bethe-Salpeter equation was originally devel-
oped to describe nuclear two-particle bound states [7] and
later applied to calculate optical spectra in solids [8,13–15]
and excitations in molecules [16–18]. Judged by compari-
son with experiment [19], the GW and BSE provide
reasonably accurate results for electronic excitations.
However, benchmarks against the experiment, like done
up to now for the GW and BSE, are always affected by
unaccounted effects not present in the theoretical descrip-
tion (non-Born-Oppenheimer, electron-phonon, relativistic
corrections, etc.), which can mask the real many-body
performances of the approaches. Validation of the

approximations against exact analytic solutions—or at least
accurate, safe, and reliable numerical solutions—in realistic
models or simple real systems is an unavoidable step for
further improvement.
A neutral helium atom is the simplest real many-electron

system in nature, at the extreme limit where “many
electron” is reduced to only two electrons. It is the lightest
atom presenting the complication of the many-body corre-
lations, and, due to the full rotational symmetry of the ionic
potential, it is simpler than the hydrogen molecule. This
allows us to write the electronic wave functions on a basis
of only three scalar coordinates, Hylleraas functions, whose
parameters are then varied to obtain the ground or the
excited states. Calculations can achieve extremely high
accuracy, 10−7 hartree on energies in the best cases [20],
and their quantitative agreement with the experiment may
be considered as one of the triumphs of quantum mechan-
ics. The exact theoretical result makes helium, that is,
almost a toy model and yet a real system, an ideal
workbench for any many-body methodology.
The purpose of this work is to check the validity of

many-body GW and BSE calculations of the helium
excitation spectrum against the exact results of the idealized
nonrelativistic helium Hamiltonian [20]. This is a check of
the core of the methodology, the solution to the many-body
problem. The helium atom can represent a very severe test
case for these many-body theories, whose underlying
approximations have been devised to describe the extreme
opposite limit of many electrons, like bulk solids, where
screening is much more important. The concept itself of
screening is the way towards correlations beyond the
Hartree-Fock method by the GW approximation. The
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validity of the BSE two-particle electron-hole propagator
might be questioned in a system where the hole is dug in a
Fermi sea of only two electrons. Important drawbacks of
the GW and BSE approaches, like the self-interaction
[21–24] or the self-screening problem [25,26], should
directly manifest in helium atom calculations and strongly
limit the accuracy of the results. On the other hand, the
validation of the GW and BSE on helium in atomic physics
represents an important confirmation of this methodology;
it quantifies performances and errors in condensed matter;
it may face reluctance and skepticism within theoretical
chemistry, where the GW and BSE were recently exported;
it may receive attention from nuclear physics for an
application to excitations in nuclei.
The high accuracy of experimental spectroscopy on

helium have pushed theoretical calculations of higher-order
effects, like nucleus finite mass recoil, relativistic fine
structure, and QED radiative corrections [27–29].
Furthermore, the electron-hole (e-h) Bethe-Salpeter calcu-
lation of this Letter should not be confusedwith the electron-
electron extended, three-body external potential, relativistic
Bethe-Salpeter calculations [29–31] of higher-order correc-
tions to the fine structure. Although an active research field,
these corrections are not the purpose of this Letter. Unless
otherwise stated, we use atomic units in the following.
Calculation.—The many-body perturbation theory meth-

odology is a three step procedure. (1) First, the calculation
of a starting, approximated electronic structure (both
energies and wave functions) of a somewhat arbitrary
Hamiltonian chosen as zero order. Today, the most
common choice is DFT, e.g., in the local-density approxi-
mation (LDA) or beyond. Here, we preferred, rather, a
return to the origins [3,4,8] and chose the Hartree-Fock
method. This choice avoids hybridization with alternative
theories, like DFT, so to allow, at the end, a clear
comparison between the GW-BSE and DFT-TDDFT
results. In fact, the accuracy of the DFT-TDDFT results
on He critically relies on the first DFT step, and a choice of
the same initial step here too can raise doubts about the
effective merit of the following GW and BSE steps. We
then calculate the HF electronic structure energies and
wave functions, ϵHFi , ϕHF

i ðrÞ,

HHðrÞϕHF
i ðrÞ þ

Z
dr0Σxðr; r0ÞϕHF

i ðr0Þ ¼ ϵHFi ϕHF
i ðrÞ;

where HHðrÞ ¼ −∂2
r=2þ vextðrÞ þ vHðrÞ is the Hartree

Hamiltonian and Σx is the Fock exchange operator. We use
the full nuclear potential vextðrÞ ¼ −Z=r and perform an
all-electron calculation to reduce sources of inaccuracy
related to pseudopotential issues in our comparison to the
exact result. (2) The starting electronic structure is then
used to calculate the Green function G, the dynamically
screened interaction, W, in the random-phase approxima-
tion, and the self-energy, Σ, that, in the GW approximation,
is the convolution product of G and W:

Σðr; r0;ωÞ ¼ i
2π

Z
dω0Gðr; r0;ω − ω0ÞWðr; r0;ω0Þ: ð1Þ

TheGW electronic structure, εi, φiðrÞ, is then calculated by
solving the quasiparticle equation,

HHðrÞφiðrÞ þ
Z

dr0Σðr; r0;ω ¼ εiÞφiðr0Þ ¼ εiφiðrÞ: ð2Þ

In self-consistent (SC) GW, the new electronic structure is
used to iterate the calculation of G, W, and Σ equation (1)
and solve Eq. (2), until convergence is achieved. There are
several ways to perform full or “quenched” SC GW
[32–35]. The question of which is better and even whether
the SC form really improves on the spectral properties [32]
is still open. Here, we want to check the standard
procedure, so we refer to one iteration, non-self-consistent
G0W0, or apply self-consistency only on the energies εi,
keeping unchanged the wave functions φiðrÞ. Indeed, the
difference between HF and exact wave functions has been
found to be barely discernible for He [36]. (3) The final step
is the resolution of the Bethe-Salpeter equation on top of
the GW electronic structure. This is equivalently done by
solving for the eigenvalues Eλ and the eigenvectors Ψλ of
an excitonic Hamiltonian,�

HR HC

−HC� −HR�

�
Ψλ ¼ EλΨλ; ð3Þ

defining the resonant (R) and coupling (C) parts as

HR
vc;v0c0 ¼ ðεc − εvÞδvv0δcc0 þ iΞvc;v0c0 ; HC

vc;c0v0 ¼ iΞvc;c0v0 ;

where v and c run over, respectively, the occupied and
empty GW states εi, φiðrÞ. Also, Ξ ¼ δΣ=δG is the Bethe-
Salpeter kernel that, for singlet and triplet states, can be
written as

1Ξij;i0j0 ¼ ihφjφ
�
j0 jWjφiφ

�
i0 i − 2ihφ�

iφjjwjφ�
i0φj0 i; ð4Þ

3Ξij;i0j0 ¼ ihφjφ
�
j0 jWjφiφ

�
i0 i; ð5Þ

with wðr; r0Þ ¼ 1=jr − r0j being the bare Coulomb inter-
action. The excitonic eigenvalues Eλ of the BSE equivalent
equation (3) are the final excitation energies of the system,
while the eigenvectors Ψλ are the excitonic wave functions
from which one can extract the excitation oscillator
strength. In the Tamm-Dancoff approximation (TDA),
the non-Hermitian coupling part is neglected, HC ¼ 0.
In addition to GW and BSE, we have also performed a

time-dependent Hartree-Fock (TDHF) calculation, a
common approximation in quantum chemistry, condensed
matter, and frequently called RPA in the context of nuclear
physics [37] (not to be confused with the RPA approxi-
mation in condensed matter). TDHF is equivalent to a BSE
calculation that starts with the HF method rather than GW,
and takingW ¼ w (the bare Coulombian) in the BSE kernel
equations (4) and (5).
We used a d-aug-cc-pV5Z [38] correlation-consistent

Gaussian basis set with angular momentum up to l ¼ 5 and
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including a double set of diffuse orbitals. HF calculations
were carried by the NWCHEM package [39], and GW and
BSE by the FIESTA code [10,16,40] that integrates Eq. (1)
by contour deformation and uses a Coulomb-fitting reso-
lution of the identity with the associated auxiliary basis
d-aug-cc-pV5Z-RI [41].
Results.—In Table I we report our calculated He electron

removal and addition HF and GW quasiparticle (QP)
energies, in comparison to the exact energies [20] which
coincide with the experiment within 10−4 hartree. For the
1s removal energy, equal to minus the ionization potential
(IP), the HF result presents an error of 0.3 eV which is
reduced to only 0.1 eV in GW. There are no exact
calculations of the 2s addition energy, but it is known
from the experiment that the He electron affinity (EA) is
negative, so that the addition of a third electron costs energy
and three-electron states are unbound. Both the HF method
and GW correctly present a spectrum of unbound states
(positive energy) in the electron addition part of the
spectrum. This is not the case of DFT Kohn-Sham (KS)
energies, even the exact ones. Exact KS eigenvalues and the
exact DFT exchange-correlation potential are available in
He [42,43] by an inversion of the Kohn-Sham equation
imposing the exact solution [20]. The last occupied exact
KS eigenvalue is known [44–46] to coincide with minus the
ionization potential, and this is the case here for the 1s.
However, the rest of the KS spectrum has no physical
interpretation, and here we see that even exact KS energies
are qualitatively off. On the other hand, exact KS energy
differences were found [42,43] surprisingly closer to the
neutral (e.g., optical) excitation spectrum than KS energies
are to charged (e.g., EA, photoemission) excitations.
In Fig. 1 and Table II, we report the first six helium

excitation energies from HF and GW energy differences,
corrected by the BSE calculation and compared to the exact
result [20], which also coincides with the experiment within
10−4 hartree, and to the TDHF method. We see that neutral
excitations are qualitatively and quantitatively captured by
the BSE, which reaches a good overall agreement with the
exact result. The very concepts of screening and exciton and
BSE electron-hole propagators are questionable and are
pushed to their extreme limit of application in He, and yet
BSE systematically improves upon the TDHF method.
The error is reduced by a factor of 2 or better when passing
from the TDHF method to the BSE, i.e., introducing the
screening. Although one might have expected severe
self-interaction and self-screening problems in He, the error

is only 0.04 eV for the first 23S excitation and degrades for
higher excitations, up to 0.6 eV for 1S. This degradation is
merely a finite basis effect. Indeed, in Table III we show the
convergence of selected states with respect to the size of
the Gaussian basis sets, and, in particular, with respect to the
presence of diffuse (augmented) orbitals. The ionization
potential IP ¼ −ϵ1s is converged already at the level of a
standard cc-pVTZ Gaussian basis [38] (not shown). This is
because the 1s state is highly localized and requires few
Gaussians to be represented accurately. Higher states get
more andmore delocalized and, consequently, require larger
(more diffuse) basis sets. The first 23S neutral excitation is
converged at an augmented basis (aug-cc-pV5Z), while
the intermediate 21P requires a double augmentation level
(d-aug-cc-pV5Z). The results for 31S are clearly less

TABLE I. He electron removal (first line) and addition (follow-
ing lines) energies (hartree) in the HF method,GW, the exact [20]
and experimental (EXP) result, and DFT-exact KS energies [42].

nl HF GW Exact and EXP Exact-DFT

1s (¼ −IP) −0.9143 −0.9075 −0.9037 −0.9037
2s (¼ −EA) þ0.0217 þ0.0213 >0 −0.1577
2p þ0.0956 þ0.0944 −0.1266
3s þ0.1394 þ0.1369 −0.0645

FIG. 1. He atom excitation spectrum. The 0 of the energy is set
to the ground state 11S. (Inset) 21P electron-averaged hole (blue)
and hole-averaged electron (red) distributions, isosurfaces taken
at 5 × 10−4 a:u:.

TABLE II. He excitation energies in atomic units (hartree). The
0 of the energy is set to the He ground state 11S.

nSL HF G0W0 GW BSETDA BSE Exact TDHF

23S
0.9396 0.9297 0.9289

0.7288 0.7271 0.7285 0.7237
21S 0.7689 0.7676 0.7578 0.7759
23P

1.0136 1.0028 1.0020
0.7728 0.7724 0.7706 0.7806

21P 0.7897 0.7894 0.7799 0.7997
33S

1.0574 1.0453 1.0444
0.8432 0.8427 0.8350 0.8499

31S 0.8648 0.8637 0.8425 0.8732
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converged and accurate. Higher states are not converged
even at this high level of double augmentation, andwedonot
report them. Anyway, states towards the continuum of
hydrogenic Heþ (1s) plus a free electron are less interesting
for the study of the many-body electron-electron interaction
and would require a better adapted basis, e.g., plane waves.
The same also holds for double excitations [47–49], which
are much more interesting, but, for He, lie deep in the
continuum [50]. Our Gaussian calculation indicates an
absolute accuracy of the GW and BSE calculations of
0.1 eV for the physically relevant low-lying many-body
excitation spectra, independent of finite basis or pseudopo-
tential errors.
In the following, we discuss the comparison between the

BSE and TDDFT results. Very accurate TDDFT results are
reported in Ref. [51] (see Fig. 1 and Tables I and II).
However, these results fundamentally rely on the use of
unapproximated, exact DFT Kohn-Sham eigenvalues.
Exact DFT Kohn-Sham energy differences [42,43,51]
are in He already within 0.5 eV of the exact excitation
energies. Therefore, the TDDFT kernel has the easier task
of only splitting singlet and triplet states, which is already
well done by the adiabatic LDA standard approximation.
Exact Kohn-Sham eigenvalues are exceptionally available
only for He and another few systems where the exact Kohn-
Sham potential is known by reverse engineering from the
exact solution. If both the DFTand TDDFT calculations are
consistently done using approximations, e.g., the LDA, as
in the more standard procedure, the results drastically
change. None of the excitations are bound in the DFTþ
TDDFT LDA [52], and the generalized gradient approxi-
mation (GGA) does not improve. Because of the missing
long-range 1=r decay in the exchange-correlation potential,
there is no Rydberg series in LDA or GGA atoms. These
standard approximations of DFT TDDFT are not even
qualitatively validated on this benchmark.
The physical mechanisms behind our HF-GW-BSE

scheme are different. From Fig. 1, we see that HF as well
as GW energy differences, contrary to exact DFT KS
energy differences, are substantially different from the
exact neutral excitation energies. This is a general feature:
GW quasiparticle energies physically represent electron
removal or addition charged excitations, e.g., the IP and the
EA or band plots measured in photoemission. Quasiparticle
energy differences are physically distinct from neutral
optical excitations because they miss the electron-hole

interaction. The latter is introduced only at the level of
the BSE. From the difference between the GW and BSE
levels in Fig. 1, one can see the importance of the e-h
interaction. In contrast with TDDFT, the BSE kernel
manages not only to split singlet and triplet states but,
more importantly, to bring GW levels, which are placed far
in the continuum, down to the discrete bound spectrum
region. Our calculation has not made use of any additional
helium specific knowledge from the exact solution, like the
use of exact DFT KS energies, and relies only on standard,
commonly accepted approximations. Specifically, it is
derived on top of the GW approximation, Ξ¼δΣGW=δG,
it neglects a variational term in δW=δG, and its W in
Eqs. (4) and (5) is taken to be static, Wðω ¼ 0Þ. Therefore,
the present severe workbench on the helium limiting case
represents a validation of an already broadly applied recipe.
In Table II we also quote the results of the BSE in the

TDA. In He, TDA introduces an error not larger than the
other approximations in this methodology. However, we
already know several cases [53–55] where the TDA breaks
down. In Table II we also report intermediateG0W0 results.
Their values are higher than the eigenvalues of self-
consistent GW by only ð8–9Þ × 10−4 hartree, and this
difference roughly propagates through the BSE to the final
excitation energies. We confirm the conclusion of Ref. [10]
that, in isolated systems, there is no appreciable improve-
ment from going beyond G0W0 when the HF method is
used as a starting point.
Finally, our work also provides the possibility of

quantifying the quality of wave functions, independently
from energies, through excitation oscillator strengths f
[20]. In the BSE, fλ results from an expression implying a
sum over all electron-hole electric-dipole matrix elements
between QP wave functions hφcje−iqrjφvi times the exciton
wave function Ψvc

λ e-h coefficients. In the inset of Fig. 1,
we plot electron and hole distributions from the excitonic
wave functionΨ21Pðrh; reÞ for the 21P state. In Table IV we
report the oscillator strength f11S→21P of the transition from
the ground state 11S to the 21P excited state. The transitions
to other states studied here are all forbidden by selection
rules obeyed in our electric-dipole approximation BSE
code. Starting from the HF value of 0.2009, we find, for the
BSE, 0.2763, in quantitative agreement with the exact value
of 0.27616 [20] and improving on the TDHF value of
0.2916. The exact DFT KS result is 0.3243 [56], and the
TDLDA is also around that value [52]. These values
confirm the accuracy of our HF-GW-BSE approach and,
specifically, the quality of exciton wave functions Ψλ.
It isworthmentioning a last interesting finding of ourBSE

calculation. One expects that an nL excitation has, in

TABLE III. Basis set convergence of the ϵ1s ¼ −IP, selected
excitation energies EnSL, and the oscillator strength f of 21P.

cc-pV5Z aug-cc-pV5Z d-aug-cc-pV5Z Exact

ϵ1s −0.9066 −0.9076 −0.9075 −0.9037
E23S 0.8538 0.7284 0.7271 0.7285
E21P 1.3345 0.8684 0.7894 0.7799
E31S 2.6041 1.1952 0.8637 0.8425
f11S→21P 1.7607 0.7272 0.2763 0.27616

TABLE IV. He first excitation oscillator strengths.

BSE Exact TDHF HF Exact-DFT

f11S→21P 0.2763 0.27616 0.2916 0.2009 0.3243 f1s→2p
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general, a dominant contribution from the 1s → nl, l ¼ L
transition, like the graph in Fig. 1 suggests, plus an
admixture of higher energy transitions introduced by the
BSEkernelΞ.We found that this is not the case for the triplet
n3S excitations. The 1s → 2s transition contributes only for
42% to the 23S excitation, while a 52% dominant contri-
bution comes from 1s → 3s. The reverse holds for the
highest energy 33S excitation, which has a 58% contribution
from 1s → 2s and only 38% from the 1s → 3s transition.
Conclusions.—We have benchmarked the ab initio

many-body GW and BSE against exact results of the
helium atom. The standard approximations behind GW
and the BSE accurately capture the physics of this two-
body only limiting case. The excitation energies are in good
agreement with the exact spectra. The surprising agreement
on the f11S→21P oscillator strength indicates a good
description of the wave functions.

J. L. and X. B. acknowledge funding from the European
Union Horizon 2020 Programme for Research and
Innovation under Grant No. 646176. We thank Peter
Schuck for seminal discussions and continuous support.
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