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We present new limits on exotic keV-scale physics based on 478 kg d of MAJORANA DEMONSTRATOR

commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and
solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using
monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for
11.8 keV mass particles, limiting gAe < 4.5 × 10−13 for pseudoscalars and ðα0=αÞ < 9.7 × 10−28 for
vectors. We also report a 14.4 keV solar axion coupling limit of geffAN × gAe < 3.8 × 10−17, a 1

2
β2 <

8.5 × 10−48 limit on the strength of PEPVelectron transitions, and a lower limit on the electron lifetime of
τe > 1.2 × 1024 yr for e− → invisible.

DOI: 10.1103/PhysRevLett.118.161801

The MAJORANA DEMONSTRATOR, described in detail in
Ref. [1], is a neutrinoless double-beta decay (0νββ) experi-
ment located4850 ft undergroundat theSanfordUnderground
Research Facility in Lead, South Dakota [2]. MAJORANA

consists of two separate custom ultralow background

modules, each containing seven arrays ofP-type point contact
(PPC) high-purity germanium (HPGe) detectors with a total
mass of 44.1 kg, of which 29.7 kg is enriched to 88% 76Ge.
The geometry of the PPC detectors results in low

capacitance and reduced electronic noise, and permits good
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energy resolution with very low energy thresholds.
In addition, PPC HPGe detectors have advantageous
pulse-shape discrimination capabilities [3–5]. Previous
experiments have exploited these capabilities to perform
high-sensitivity searches for light weakly interacting mas-
sive particles (WIMP) and bosonic dark matter (DM) [6–8]
as well as 0νββ decay searches [9–11].
In this Letter, we set limits on multiple keV-scale rare-

event interactions from monoenergetic signal limits with
478 kg d of MAJORANA commissioning data. Bosonic
pseudoscalar (i.e., axionlike) and vector DM, with mass
scale of 1–100 keV, offer an explanation for the observed
subgalactic structure in the Universe, assuming a large
number density compensates for their light mass. With
suitable electronic coupling strength, they may be detect-
able via a pseudoscalar or vector-electric effect that is
analogous to photoelectric absorption [12–14]. In addition,
we report limits on the coupling of 14.4 keV solar axions
competing in the M1 transition of 57Fe nuclei, Pauli
exclusion principle violating (PEPV) electronic transitions,
and electron decay, e− → invisible.
MAJORANA relies on careful material selection and han-

dling [15] to reduce intrinsic and extrinsic radioactive
background, making it well suited for dark matter and other
rare-event searches. MAJORANA modules are surrounded by
a copper shield, a lead shield, an activemuonveto [16], and a
polyethylene neutron shield. Within the shielding, radon is
purged via liquid nitrogen boil-off. The inner 5 cm of the
copper shield, the cryostats that house the detectors, and the
crystal support structures are fabricated from radiopure
(<0.1μ Bq=kgU) copper electroformed in an underground
facility.
The data presented here were acquired during the June 30

to September 22, 2015 commissioning of MAJORANA

Module 1 (M1). During this time, Module 2 was under
construction and not operational. The shieldwas incomplete:
the innermost 5 cm of electroformed copper shielding was
not yet installed, the active muon-veto system was not
finished, and the exterior neutron shielding did not fully
enclose the inner layers. Shielding inside and outside the
vacuum and cryogenic services still had to be added. The
natural (unenriched) detectors had a high cosmogenic back-
ground compared to the enriched detectors because of
different handling procedures, and were only used here
for systematic studies; see Fig. 1. Seven of the enriched
detectorswere inoperable due to failed electrical connections
or high noise rates. The active mass of the remaining 13
enriched detectors was computed from detector dead layer
measurements provided by ORTEC [17] and verified via
collimated 133Ba source scans, totaling 10.06� 0.13 kg.
The commissioning live time was 47.503� 0.001 d, result-
ing in an exposure of 478� 6 kg d.
The data-acquisition (DAQ) system is controlled and

monitored by the ORCA software package [18]. Signals from
the PPC detectors are amplified and shaped by a custom

low-noise resistive-feedback preamplifier with a measured
equivalent noise charge of∼85 eV inGe-detector-equivalent
FWHM resolution [19]. The amplifier provides low-gain and
high-gain outputs that are digitized separately by a custom
14-bit 100 MHz VERSA-Module Europa-based digitizer
designed for the GRETINA experiment [20]. Signals
are digitized continuously and triggers are generated
when the output of a firmware-based trapezoidal filter trigger
exceeds the preset threshold for that channel. An internal
pulser (∼0.1 Hz), implemented by injecting charge through
capacitive coupling to the gate of the preamplifier’s front-
end JFET, is used to monitor detector live time and gain
stability.
Transient and other irregular noise pulses from the

DAQ hardware contaminate the energy spectrum between
2–70 keV. Most of the nonphysical waveforms are due to

accidental retriggering during baseline restoration after
pulser events. These are removed by eliminating events
with more than one detector hit or by using pulse-shape
discrimination. The acceptance of these cuts is 99.98%
with negligible uncertainty.
Slow-pulse waveforms with rise times of ∼1 μs or longer

constitute a significant background below 30 keV, as
recognized by previous experiments [6–8,21]. Slow pulses
are energy-degraded events that originate in low-field
regions of the detector near the surface dead layer, where
diffusion is the dominant mode of charge transport. At
energies <10 keV, discriminating slow pulses using pulse
rise-time measurements becomes difficult since signal to
noise ratio decreases with energy.
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FIG. 1. Energy spectra from 195 kg d of natural (blue) and
478 kg d of enriched (red) detector data. A fit of the background
model (linear þ tritium beta spectrumþ 68GeK shell) to the
enriched spectrum is also shown (dotted black). The background
rate and slope, along with the tritium and K-shell rate, were
floated in the fit. The background fit χ2=NDF is 75.7=85.
Cosmogenic isotopes in the natural detectors produce peaks at
10.36 (68Ge), 8.9 (65Zn), and 6.5 keV (55Fe) on top of a tritium
beta decay continuum. The FWHM of the 10.4 keV peak is
∼0.4 keV. The spectrum shown does not include a T=E cut
acceptance correction.
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A more robust parameter, T=E, was developed to tag
slow pulses. A trapezoidal filter with a 100 ns ramp time
and a 10 ns flat-top time was applied to each waveform, and
the maximum (T) value of the result was measured. The T
value was normalized by an energy parameter, (E), which
was reconstructed offline by finding the maximum [22] of a
trapezoidal filtered waveform with a filter rise time of 4 μs
and flat-top time of 2.5 μs. This parameter exhibited good
separation between fast and slow-pulse waveforms down to
∼3 keV, below the 5 keV analysis threshold.
The signal acceptance of the T=E cut was measured by

capacitively injecting simulated signal pulses of varying
amplitude directly onto the detector’s outer contact using a
precision waveform generator. The energy dependent
acceptance was determined by finding the fraction of these
events that pass the cut at set pulse amplitudes. An error
function was fit to the acceptance fractions to estimate the
acceptance between pulser-peak events. Only three of the
13 analysis detectors were instrumented with the required
electronics to perform this test and the smallest-valued
(most conservative) acceptance function, ranging from 96%
at 5 keV to 100% at 20 keV, was applied in the DM rate
analysis, Eq. (4). The detector acceptance functions varied
by at most 1%. The energy dependent acceptance uncer-
tainty was determined from the error function fit,

ηðEÞ ¼ ErfðE − μÞ
ffiffiffi

2
p

σ
: ð1Þ

The fit values were μ¼−26�4keV and σ¼13.7�1.7keV
with a strong anticorrelation, corrðμ; σÞ ∼ −1.
A 228Th line source inserted into a helical calibration

track surrounding the cryostat was used for energy cali-
bration. Multiple calibration periods were interspersed
between background data collection to track and account
for long-term drift in gain. Statistically significant peaks in
the 228Th decay chain energy spectrum were used to
calibrate the energy spectra of each detector independently.
To extend our calibration to lower energies, we included the
measured baseline noise as the zero point energy in the fit.
For an overview of the calibration system, see [23].
We combined the calibration spectra from the 13

detectors, and summed a total of 102.8 hours of calibration
data over all of the calibration periods. The resulting high
statistics spectrum permitted peaks from Bi x rays and from
Th and Pb gamma rays. These were used to help quantify
biases and uncertainties in the energy scale below 120 keV.
A small systematic offset in the energy scale (ES) of
∼0.2 keV from known peak energies was observed in this
region. The offset is consistent with residual digitizer
nonlinearity effects, which were estimated by comparing
energy measurements from low-gain and high-gain chan-
nels. A linear correction (ΔE),

ΔEðESÞ ¼ αEðES − 95.0 keVÞ þ E0; ð2Þ

was applied to mitigate the offset. The parameters αE ¼
−0.0014� 0.0008 and E0 ¼ −0.256� 0.016 keV were
determined by fitting a line to the peak-centroid offset
values of the low-statistics peaks between 70 and 120 keV.
The correlation coefficient was corrðαE; E0Þ ¼ −0.22. The
correction was then extrapolated to lower energies. As a
check, the predicted offset at 10.36 keV, the 68Ge cosmo-
genic K-shell cascade peak, was computed and found to be
−0.12� 0.07 keV. In the natural detectors, this peak was
measured at 10.22 keV, and is consistent with the correction
model prediction in Eq. (2) to within the parameter
uncertainties. We are improving our nonlinearity correction
and expect to remove this offset in future analyses.
A multipeak fitting routine was applied to the summed

228Th calibration spectrum to determine the energy depen-
dent widths (σ) of peaks in the 1–260 keV energy range.
The widths were fit to

σEðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ20 þ hεiFE
q

; ð3Þ
with resulting fit values of σ0 ¼ 0.16� 0.04 keV and
F ¼ 0.11� 0.02. The fit parameters were fully correlated,
corrðσ0; FÞ ∼ 1. The constant hεi ¼ 2.96 eV is the average
energy required to produce an electron-hole pair in Ge.
Limits on pseudoscalar dark matter axioelectric coupling

were calculated using a method similar to [24]. For com-
parison with other experiments, we set the Milky Way halo
density to ρDM ¼ 0.3 GeV cm−3 [25] and assumed that
pseudoscalar DM constitutes the total density. The expected
number of detected counts, dN=dE at energy E, assuming a
pseudoscalar mass of mA in keV, is given by [24,27]

dN
dE

ðE;mAÞ ¼ ΦDMðmAÞσAeðmAÞ

× ηðEÞ 1
ffiffiffiffiffiffi

2π
p

σEðmAÞ
exp

�

−
ðE−mAÞ2
2σ2EðmAÞ

�

MT;

ð4Þ

ΦDM ¼ ρDM
vA
mA

¼ 7.8 × 10−4
�

1

mA

�

β½=barn=day�; ð5Þ

σAeðmAÞ ¼ σpeðmAÞ
g2Ae
β

3m2
A

16παm2
e

�

1 −
β

2
3

3

�

; ð6Þ

where β ¼ vA=c is the average DM velocity with respect to
the earth, ΦDM is the average DM flux at Earth, σAe is the
axioelectric cross section as a function of energy, σE is the
energy resolution at E ¼ mA [given by Eq. (3)], MT is
the exposure of the detectors used in this analysis, and ηðEÞ
is the T=E cut acceptance function [Eq. (1)]. In Eq. (6), σpe
is the photoelectric cross section in Ge [28]. In this
analysis, the peak energy of interest is the pseudoscalar
mass (mA).We take β ¼ 0.001 [24,29], roughly themean of
the dark matter velocity distribution with respect to Earth.
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We place an upper limit on the pseudoscalar dark matter
coupling constant, gAe, at multiple mA values between 5
and 100 keV using an unbinned profile likelihood method
[30–32]. The likelihood function incorporates a DM signal
probability density function that is modeled separately with
Eq. (4) for each individualmA value, a linear background, the
tritium spectrum, and a 10.36 keV cosmogenic x-ray peak.
A multidimensional Gaussian penalty term floats the nui-
sance parameters (αE, E0, σE, and η) in the likelihood
function according to their covariance matrices. The penalty
term affects the final limit by a few percent at most. The best
fit to the background model is shown in Fig. 1.
A comparison of our gAe-limits, as a function of pseudo-

scalar mass, to previous results is shown in Fig. 2. Our limits
are an improvement over other germanium experiments,
EDELWEISS [24] and CDEX [33], especially for mA <
18.6 keV due to the low cosmogenic activity in MAJORANA

enriched detectors. TheXMASS [34] experiment has the best
limits formA > 40 keV. Two XENON limits are shown: the
original published in [29] (solid), and a correction from an
erratum [35] (dashed). Preliminary LUX results [36] are
comparable to the revised XENON results. Currently the
xenon experiments XMASS, XENON, and LUX report the
best limits due to the> 10× larger exposure of their fiducial
mass.
Using the same data and analysis technique with a

Gaussian modeled signal, we also set limits on the electronic
coupling of vector bosonic DM [12]. The interaction rate for
vector DM is

ΦDMðmVÞσVeðmVÞ ¼
4 × 1023

mV

�

α0

α

�

σpeðmVÞ
A

½=kg=d�;

ð7Þ

whereA is the atomicmass ofGe,mV is thevector bosonmass
in keV, and α0 is the coupling of vector DM to electrons,
analogous to the electromagnetic fine structure constant, α.
The expected number of detector counts at energyE is found
by replacing the axioelectric interaction rate in Eq. (4) with
the vector-electric rate, withmV substituted formA. Limits on
the vector coupling from the unbinned likelihood analysis
described above are shown in Fig. 3. In the case of vectorDM,
the experimental constraints are more stringent than astro-
physical limits, except for red giant (RG) stars.
In addition to generic pseudoscalar and vector DM, we

analyzed our sensitivity to solar axions. 57Fe has a large
solar abundance and its first excited state at 14.4 keV is
thermally excited within the Sun’s interior. Axion emission
is possible from the decay of this state [38]. Electric
coupling of these axions to atomic electrons in the detector
would manifest as a peak at 14.4 keV. No such peak was
observed in MAJORANA, and a limit on the product of the
effective axionuclear coupling, geffAN , of solar axions (see
[39]) and the axioelectric coupling, gAe, was determined.
Replacing the flux in Eq. (5) with [24]

Φ14.4 ¼ β3 × 4.56 × 1023ðgeffANÞ2½=cm2=s�; ð8Þ

and substituting mA in Eq. (4) with 14.4 keV, we use the
unbinned likelihood analysis to determine a limit on the
coupling constant. Since this is a monoenergetic transition,
the reduced axion velocity, β, depends on the mass of
the axion, which can range from 0 to 14.4 keV. In the low
mass limit where β → 1, we find a 90% UL of geffAN × gAe <
3.8 × 10−17. A comparison of the MAJORANA and
EDELWEISS coupling limits is shown in Fig. 4.
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Two other non-DM related rare-event searches were
carried out using the low energy data and analysis, a Pauli
exclusion violating decay, and an electron decay search.
While the Pauli exclusion principle is a fundamental law
of nature, its physical origin is still not fully understood
[40–45]. MAJORANA searched for the PEPV transition of an
L-shell Ge electron to the K shell that would manifest as a
10.6 keV [44] shoulder on the 10.36 keV 68Ge peak. Using
the unbinned likelihood method with a generic signal plus
background model, we set a 90% C.L. on the excess
signal rate of 0.03=kg=d. This equates to a lifetime
τ > 2.0 × 1031 s. Comparing to the 1.7 × 10−16 s lifetime
of a standard Kα transition in Ge, one derives an upper
limit on the PEPV parameter 1

2
β̂2 < 8.5 × 10−48, a ∼35%

improvement over the previous limit [46].
Our data can also be used to set a limit on the decay of the

electron. Charge conservation arises from an exact gauge
symmetry of quantum electrodynamics with the associated
gauge boson being exactly massless. Even so, the possibility
of its violation has been theoretically explored [47–53]. For
example, the charge-conservation violating process e− →
νν̄ν produces an atomic-shell hole. If an electron disappears
from the K shell of a Ge atom, resulting atomic emissions
deposits 11.1 keVof energy within the detector. We search
for events of this characteristic energy as possible indications
of electron decay using a similar analysis as for the PEPV
and solar axion search. We determined a lifetime limit of
>1.2 × 1024 yr. The best limit on the lifetime for this process
is > 2.4 × 1024 yr (90% C.L.) [54].
We found no indication of new physics that would

manifest as a peak in the energy spectrum of the Module 1
commissioning data presented in this Letter. Upgrades to
MAJORANA, detector repairs, and the addition of Module 2

will significantly improve the sensitivity to new physics.
Lower background rates in subsequent data sets have already
been observedwith the installation of the inner electroformed
copper and additional polyethylene neutron shielding.
Analysis thresholds below 5 keV allow us to constrain
additional processes including light-WIMP scattering.
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